Using SMART goals for technical debt reduction

Last updated on May 9th, 2019 at 02:17 pm

Attempting to reduce the enterprise burden of technical debt by setting so-called “SMART goals” in the obvious way can often produce disappointing results. SMART, due to George T. Doran [Doran 1981], is a widely used approach for expressing management goals. “SMART” is an acronym for “Specific, Measurable, Attainable, Realistic, and Time-boxed,” though the last three words (the “ART”) are chosen in various alternative ways. Doran himself used “assignable, realistic, and time-related.”

Prof. George T. Doran (1939-2011), creator of the S.M.A.R.T acronym for setting management objectives
Prof. George T. Doran (1939-2011), creator of the S.M.A.R.T acronym for setting management objectives. Watch a 2010 interview of Prof. Doran at YouTube.
SMART is so embedded in management culture that many assume without investigation that expressing technical debt reduction goals directly using the SMART pattern will produce the desired results. Also embedded in management culture is the aphorism, “You get what you measure.” [Ariely 2010]  [Bouwers 2010] Combining these two ideas in a straightforward way, one might express the technical debt reduction goal as, “Reduce the burden of technical debt by 20% per year for each of the next five years.”

There is ample support for a claim that this “direct” approach to applying the SMART technique will be ineffective. The fundamental issue is that so much of employee behavior affects technical debt indirectly that it overwhelms the effects of employee behaviors that affect technical debt directly. The result is that although the direct approach does cause some employees to adopt desirable behaviors, their impact is not significant enough compared to the effects of the behaviors of employees who see little connection between their own activities and the burden of technical debt, or who are subject to competing constraints on their behaviors that then cause them to act in ways that increase technical debt.

That’s why it’s necessary for management to develop a series of SMART goals that affect behaviors that have indirect effects on technical debt. In the first part of this post, “Setting a direct SMART goal for technical debt reduction is problematic,” I explore the problems inherent in the direct approach. In the second part, “How to set SMART goals for technical debt,” I provide examples of SMART goals that touch on behaviors that have indirect effects on technical debt.

Setting a direct SMART goal for technical debt reduction is problematic

Let’s begin by exploring some of the problems with the direct approach. In this section, I assume that management has set a SMART goal for the enterprise in the form, “Reduce the burden of technical debt by 20% per year for each of the next five years.” But there’s nothing special about the numbers. My comments below apply to the form of the goal, rather than the specific numbers.

The direct approach assumes measurability

To attain a goal of a 20% reduction in technical debt in a given year, we must be able to measure the level of technical debt at the beginning of the year and the level at the end of the year, presumably with confidence in the 90% range or better. Such a measurement with the precision required might not be possible. Moreover, in most cases the probability that such a measurement is possible is low. For these reasons, setting periodic goals for total technical debt is not a useful management tool.

Consider a simple example. One form of technical debt—and it’s a common form—is missing or incompletely implemented capability. In some instances, the metaphorical principal (MPrin) of a given instance of this debt in the current year can change spontaneously to a dramatically larger value in the following year (or even the following week), due to changes in the underlying asset unrelated to the technical debt, or due to debt contagion, or due to any number of other reasons. When this happens, the technical debt retirement effort for that year can appear to have suffered a serious setback, even though the technical debt retirement teams might have been performing perfectly well.

The direct approach assumes a static principal

With most financial debts, the principal amount is specified at the time of loan origination. Moreover, we can compute the principal at any time given the mathematical formulas specified in the loan agreement.

By contrast, in many cases, the metaphorical principal amount of a technical debt might be neither fixed nor readily computable. We can estimate the MPrin of a given kind of technical debt at a given time, and we can even make forward projections of those estimates. But they are merely estimates, and their error bars can be enormous. See “Policy implications of the properties of MPrin” and “Useful projections of MPrin might not be attainable.”

The direct approach focuses on MPrin, not MICs

Objectives expressed in terms of the volume of technical debt—the total MPrin—are at risk of missing the point. Total MPrin is not what matters most. What matters is MICs—the total cost of carrying the debt. Even more important is the timing of arrival of the MICs.

And like MPrin, MICs can vary in wild and unpredictable ways. For example, the MICs for a piece of technical debt borne by an asset that isn’t undergoing maintenance or enhancement can be zero; in a later time period, when that asset is undergoing enhancement, the MICs can be very high indeed. See  “MICs on technical debt can be unpredictable” for a detailed discussion.

Priority setting for technical debt retirement is most effective when it takes into account the timing of MICs. For example, if we know that we must enhance a particular asset by FY21 Q3, and if we know that it bears technical debt that adds to the cost of the enhancement, retiring that debt in FY20 would be advisable. On the other hand, if that form of technical debt has no effect on MICs for the foreseeable future, retiring that technical debt might not be worth the effort.

The direct approach fails to distinguish legacy technical debt from incremental technical debt

Unless policies are already in place governing the formation of new technical debt—what I call incremental technical debt—technical debt retirement programs might encounter severe difficulty meeting their goals. The technical debt retirement program might simply be unable to keep up with the formation of new technical debt resulting from new development or from ongoing maintenance and enhancement of existing assets.

The direct approach fails to anticipate the formation of enterprise-exogenous technical debt

Technical debt can sometimes form as a result of innovations, changes in standards, or changes in regulations that occur entirely external to the enterprise. I call such technical debt enterprise-exogenous. When this happens, the technical debt retirement effort can appear to have suffered a serious setback, even though the technical debt retirement teams might have been performing perfectly well. Before initiating a technical debt reduction program, it’s wise to first deploy a program that’s capable of retiring technical debt at a pace that at least equals the pace of formation of enterprise-exogenous technical debt.

Incurring technical debt is sometimes the responsible thing to do

At times, incurring technical debt is prudent. In some situations, accepting the debt you’ve incurred—even for the long term—might be called for. Because strict goals about total technical debt can lead to reluctance to incur debt that has a legitimate  business purpose, whatever goals are set for total technical debt must be nuanced enough to deal with these situations. Goals for total technical debt that adhere strictly to the SMART goal pattern sometimes lack the necessary level of nuance.

How to set SMART goals for technical debt

SMART goals can work for technical debt management, but we must express them in ways that are more closely related to behavioral choices. Here are some examples of SMART goals that can be effective elements of the technical debt management program. Some of these examples are admittedly incomplete. For example,  I offer no proof of assignability, attainability, or realism, because they can vary from organization to organization, or because the goal in question must be distributed across multiple organizational elements in ways peculiar to the organization.

At least 30% of incremental technical debt will be secured technical debt at the end of Year 1; 60% by the end of Year 2

Incremental technical debt is technical debt that’s incurred in the course of work currently underway or just recently completed. Because it’s so well understood, its MPrin can be estimated with higher precision than is usually possible with legacy technical debt. That precision is needed for defining the collateral and resources used to secure the debt.

A secured technical debt, like a secured financial debt, is one for which the enterprise reserves the resources needed to retire the debt. However, unlike a financial debt, the resources required to retire a technical debt might not be purely financial. Beyond financial resources, they might include particular staff, equipment, test beds, and downtime. The commitment might extend beyond the current fiscal period. Secured technical debt is a powerful means of driving down total technical debt burden, but it might require modification of internal budget management processes and fiscal reporting. Policymakers can help in designing and deploying the necessary changes.

Within one year, at least 50% of all incremental technical debt will be retired within one year of its origination; 70% within 18 months

This goal also exploits the fact that incremental technical debt can be estimated with relatively high precision. As a goal, it builds on the goal above by requiring that the resources pledged to retire incremental debts actually be expended as intended.

Within one year, all engineers and their direct supervisors will be educated in basic technical debt concepts

The educational materials will be developed in the next five months and piloted with 10% of the technical staff within seven months. The material will include an online proficiency test that 90% of engineers will have successfully passed within a year.

Within one year, 90% of project plans will include projections of the MPrin of the incremental technical debt they expect to generate for each delivery cycle

This information is useful for making forward projections of resources needed to secure incremental technical debt. Tracking the accuracy of these projections helps project planners improve their estimates.

Within one year, initiate a practice of identifying the top five forms of legacy technical debt, ranked by the volume of the contagion

Debt contagion is the propagation of a given form of technical debt by creating new system elements or assets in forms compatible with elements already identified as technical debt. By examining the body of incremental technical debt created enterprise-wide in a given time period (say, by fiscal quarter), we can determine the portion of that incremental debt that results from contagion, for each type of contagious legacy technical debt. This data is needed to identify the most contagious forms of legacy technical debt. They are prime candidates for debt retirement.

Within one year, initiate an industrial intelligence practice that is responsible for projecting the formation of enterprise-exogenous technical debt

This group must have a sophisticated grasp of the technologies in use within the enterprise that already bear enterprise-exogenous technical debt, or which could be subject to the formation of enterprise-exogenous technical debt. Its responsibilities cover enterprise products and services, as well as enterprise infrastructure. It issues advisories as needed, and an annual forecast. The group is also responsible for recommending and monitoring participation in industrial standards organizations. The group reports to the CIO or CTO.

References

[Ariely 2010] Dan Ariely. “You are what you measure,” Harvard Business Review 88:6, p. 38, 2010.

Available: here; Retrieved: June 4, 2018

Cited in:

[Bouwers 2010] Eric Bouwers, Joost Visser, and Arie van Deursen. “Getting What You Measure: Four common pitfalls in using software metrics for project management,” ACM Queue 10: 50-56, 2012.

Available: here; Retrieved: June 4, 2018

Cited in:

[Doran 1981] George T. Doran. “There’s a S.M.A.R.T. Way to Write Management’s Goals and Objectives”, Management Review, 70:11, pp. 35-36, 1981.

Cited in:

Other posts in this thread

How budget depletion leads to technical debt

Some projects undergo budget depletion exercises when their budgets are reduced, or when there’s evidence that the funds remaining will be insufficient to complete the work originally planned. Formats vary, but the typical goal of these exercises is downscoping — removing, relaxing, deferring, or suspending some requirements. Since funds are limited, downscoping is often executed in a manner that leads to technical debt.

The Old River Control Complex on the Mississippi River
The Old River Control Complex on the Mississippi River. Built and operated by the US Army Corps of Engineers (USACE) the Old River Control Complex is used for controlling the flow from the Mississippi into a distributary known as the Atchafalaya River. Were it not for this facility, the Mississippi would long ago have rerouted itself into the Atchafalaya, which has a much steeper gradient to the ocean. Since that change would have deprived New Orleans and all the industrial facilities along the lower Mississippi of access to the water and navigational channels they now enjoy, USACE maintains a complex of flow control facilities to prevent Nature taking its course, and to prevent flooding along the lower Mississippi.
The industrial facilities of the lower Mississippi constitute a technical debt, in the sense that their existence is no longer compatible with the “update” Nature is trying to deploy, in the form of rerouting the flow of water from the Mississippi to the Atchafalaya. Because our national budget doesn’t allow for repositioning the city of New Orleans and all the industrial facilities from the lower Mississippi to somewhere along the Atchafalaya, we’ve elected to redirect the flow of water from the course Nature prefers to a course more compatible with the existing industrial base. Operating and maintaining the Old River Control Complex, together with a multitude of levees, dredging projects, and gates throughout lower Louisiana, are the MICs we pay for the technical debt that is the outdated position of the city of New Orleans and its associated industrial base.
For more about Atchafalaya, see the famous New Yorker article by John McPhee [MacFee 1987]. Photo courtesy USACE
Here’s an illustrative scenario. At the time downscoping begins, the work product might contain incomplete implementations of items that are to be removed from the list of objectives. A most insidious type of debt, and most difficult to detect, consists of accommodations contained in surviving artifacts that are no longer needed because the items they were intended to support have been cancelled. This class of technical debt is difficult to detect because the affected system components appear to be merely overly complicated. Recognizing it as a residual of a cancelled capability requires knowledge of its history. Unless these artifacts are documented at the time of the downscoping, that knowledge may be lost.

Other items of technical debt that arise from budget depletion include tests that no longer need to be executed, or documentation that’s no longer consistent with the rest of the work product, or user interface artifacts no longer needed. When budgets become sufficiently tight, funds aren’t available for documenting these items of technical debt as debt, and the enterprise can lose track of them when team members move on or are reassigned.

In some instances, budget depletion takes effect even before the work begins. This happens, for example, when project champions unwittingly underestimate costs in order to obtain approval for the work they have in mind. The unreasonableness of the budget becomes clear soon after the budget is approved, and the effects described above take hold soon thereafter.

Budget depletion can also have some of the same effects as schedule pressure. When the team devises the downscoping plan, it must make choices about what to include in the revised project objectives. In some cases, the desire to include some work can bias estimates of the effort required to execute it. If the team underestimates the work involved, the result is increased pressure to perform that work. With increased pressure comes technical debt. See “With all deliberate urgency” for more.

A policy that could limit technical debt formation in response to budget depletion would require identifying the technical debt such action creates, and later retiring that debt. Because these actions do require resources, they consume some of the savings that were supposed to accrue from downscoping. In some cases, they could consume that amount in its entirety, or more. Most decision-makers probably over-estimate the effectiveness of the downscoping strategy. Often, it simply reduces current expenses by trading them for increased technical debt, which raises future expenses and decreases opportunities in future periods.

References

[Ariely 2010] Dan Ariely. “You are what you measure,” Harvard Business Review 88:6, p. 38, 2010.

Available: here; Retrieved: June 4, 2018

Cited in:

[Bouwers 2010] Eric Bouwers, Joost Visser, and Arie van Deursen. “Getting What You Measure: Four common pitfalls in using software metrics for project management,” ACM Queue 10: 50-56, 2012.

Available: here; Retrieved: June 4, 2018

Cited in:

[Doran 1981] George T. Doran. “There’s a S.M.A.R.T. Way to Write Management’s Goals and Objectives”, Management Review, 70:11, pp. 35-36, 1981.

Cited in:

[MacFee 1987] John MacFee. “Atchafalaya,” The New Yorker, February 23, 1987.

Available: here; Retrieved: February 5, 2018.

Cited in:

Other posts in this thread

Unrealistic optimism: the planning fallacy and the n-person prisoner’s dilemma

Last updated on September 20th, 2018 at 03:51 pm

In a 1977 report, Daniel Kahneman and Amos Tversky identify one particular cognitive bias [Kahneman 2011], the planning fallacy, which afflicts planners [Kahneman 1977] [Kahneman 1979]. They discuss two types of information planners use. Singular information is specific to the case at hand; distributional information is drawn from similar past efforts. The planning fallacy is the tendency of planners to pay too little attention to distributional evidence and too much to singular evidence, even when the singular evidence is scanty or questionable. Failing to harvest lessons from the distributional evidence, which is inherently more diverse than singular evidence, the planners tend to underestimate cost and schedule. So for any given project, there’s an inherent tendency in human behavior to promise lower costs, faster delivery, and greater benefits than anyone can reasonably expect.

Aerial view of Hoover Dam, September 2017
Aerial view of Hoover Dam, September 2017. Under construction from 1931 to 1936, the dam was built for $48.8M ($639M in 2016 dollars) under a fixed-price contract. It was completed two years ahead of schedule. Apparently the planning fallacy doesn’t act inevitably. 112 men died in incidents associated with its construction. 42 more died of a condition diagnosed as pneumonia, but which is now thought to have been carbon monoxide poisoning due to poor ventilation in the dam’s diversion tunnels during construction. There’s little doubt that unrealistic optimism affects not only projections of budget and schedule, but also projections of risks, including deaths. Photo (cc) Mariordo (Mario Roberto Durán Ortiz), courtesy Wikimedia Commons.
But the problem is exacerbated by a dynamic described by Boehm et al. [Boehm 2016], who observe that because organizational resources are finite, project sponsors compete with each other for resources. They’re compelled by this competition to be unrealistically optimistic about their objectives, costs, and schedules. Although Boehm et al. call this mechanism the “Conspiracy of Optimism,” possibly facetiously, it isn’t actually a conspiracy. Rather, it’s a variant of the N-Person Prisoner’s Dilemma [Hamburger 1973].

Unrealistic optimism creates budget shortfalls and schedule pressures, both of which contribute to conditions favorable for creating non-strategic technical debt. And the kinds of technical debt produced by this mechanism, or any mechanism associated with schedule or budget pressure, tend to be subtle — they’re the types least likely to become evident in the short term. For example, technical debt that might make a particular kind of enhancement more difficult in the next project is more likely to appear than technical debt in the form of a copy of some code that should have been replaced by a utility routine. Copies of code are more easily discovered and more likely to be retired in the short term, if not in the current project. Awkward architecture might be more difficult to identify, and is therefore more likely to survive in the intermediate or long term.

In other words, the forms of technical debt most likely to be generated are those that are the most benign in the short term, and which are therefore more likely to escape notice. If noticed, they’re more likely to be forgotten unless carefully documented, an action that’s unlikely to be taken under conditions of schedule and budget pressure. In this way, the non-strategic technical debt created as a result of unrealistic optimism is more likely than most technical debt to eventually become legacy technical debt.

Policymakers can assist in addressing the consequences of unrealistic optimism by advocating for education about it. They can also advocate for changes in incentive structures and performance management systems to include organizational standards with respect to realism in promised benefits, costs, and schedules.

References

[Ariely 2010] Dan Ariely. “You are what you measure,” Harvard Business Review 88:6, p. 38, 2010.

Available: here; Retrieved: June 4, 2018

Cited in:

[Boehm 2016] Barry Boehm, Celia Chen, Kamonphop Srisopha, Reem Alfayez, and Lin Shiy. “Avoiding Non-Technical Sources of Software Maintenance Technical Debt,” USC Course notes, Fall 2016.

Available: here; Retrieved: July 25, 2017

Cited in:

[Bouwers 2010] Eric Bouwers, Joost Visser, and Arie van Deursen. “Getting What You Measure: Four common pitfalls in using software metrics for project management,” ACM Queue 10: 50-56, 2012.

Available: here; Retrieved: June 4, 2018

Cited in:

[Doran 1981] George T. Doran. “There’s a S.M.A.R.T. Way to Write Management’s Goals and Objectives”, Management Review, 70:11, pp. 35-36, 1981.

Cited in:

[Hamburger 1973] H. Hamburger. “N-person Prisoner’s Dilemma,” Journal of Mathematical Sociology, 3, 27–48, 1973. doi:10.1080/0022250X.1973.9989822

Cited in:

[Kahneman 1977] Daniel Kahneman and Amos Tversky. “Intuitive Prediction: Biases and Corrective Procedures,” Technical Report PTR-1042-7746, Defense Advanced Research Projects Agency, June 1977.

Available: here; Retrieved: September 19, 2017

Cited in:

[Kahneman 1979] Daniel Kahneman and Amos Tversky, “Intuitive Prediction: Biases and Corrective Procedures,” Management Science 12, 313-327, 1979.

Cited in:

[Kahneman 2011] Daniel Kahneman. Thinking, Fast and Slow. New York: Macmillan, 2011.

Order from Amazon

Cited in:

[MacFee 1987] John MacFee. “Atchafalaya,” The New Yorker, February 23, 1987.

Available: here; Retrieved: February 5, 2018.

Cited in:

Other posts in this thread