How performance management systems can contribute to technical debt

Few performance management systems provide guidance with respect to behaviors relating to technical debt, perhaps because technical debt is not widely understood, or perhaps because technical debt isn’t seen as a concern for the performance of anyone but engineers and their managers. Still, organizations that expect to gain control of technical debt must ensure that performance standards are clear about expectations with respect to behaviors that could affect technical debt.. In organizations in which technical debt currently plays a minor role, if any, in the performance management system, policymakers can advocate for effective changes, if they understand what the appropriate role for performance management is in controlling technical debt. This post should be helpful.

A dog receiving a reward
A dog receiving a reward. Many performance management systems implement a model that assumes that the correct configuration of incentives and disincentives will produce the desired levels of performance. This theory is questionable.

A fundamental premise of many performance management systems is that incentives can encourage desirable behavior and disincentives can discourage undesirable behavior. Unfortunately, serious questions have arisen about the effectiveness of these behavioral control mechanisms in general [Kohn 1999]. The problem is that employees find ways to harvest incentives without exhibiting the desired behavior. Likewise, they find ways to circumvent disincentives while continuing to exhibit undesired behavior.

Moreover, specifically for technical debt management, behavioral control is especially problematic, because some of the behaviors that must be controlled are inherently immeasurable. For example, the design of an incentive structure to encourage legacy technical debt retirement is debatable, given the technical difficulties involved in even defining legacy technical debt, let alone measuring its size.

Managing performance vis-à-vis technical debt, therefore, presents a problem of the kind Austin calls partially supervised [Austin 1996]. Supervising engineers whose work touches on assets that bear technical debt can only be partial, because measuring technical debt is only partially practical given the state of the art. Austin shows how partial supervision frequently leads to dysfunctional performance management, but the problem is especially vexing for managing technical debt. For example, in some cases, engineers’ work can incur new technical debt that remains unrecognized for months or years after the work is completed. To fully supervise such work would require inventing retroactive incentives and disincentives, which not only do not exist, but which are of questionable legality in most jurisdictions.

Although incentives and disincentives cannot serve to manage performance relative to technical debt, a very effective model is available. Enterprise leaders could communicate their intentions relative to technical debt, and empower the people of the organization to take steps to reduce debt. In the United States military, and others as well, a doctrine that implements this approach is called commander’s intent [Mattis 2008].

Gen. Mattis offers five principles that guide what the military calls “effect-based operations.” For technical debt management, the effect we seek is rational control of the technical debt portfolio. Here are his five principles, transformed to the field of technical debt.

  1. Technology development, maintenance, and cyberdefense in the future will require a balance of conventional and unconventional approaches.
  2. Technology evolves rapidly, and we must be willing to adapt our methods.
  3. Technologies are dynamic with an infinite number of variables; therefore, it is not scientifically possible to accurately predict the level of technical debt that will result from any given effort. To suggest otherwise runs contrary to historical experience and the nature of modern technological assets.
  4. We are in error when we think that what works (or does not work) in efforts involving one technology in one enterprise will be universally applicable to all technologies in all enterprises.
  5. Finally, to paraphrase General Sherman, “Every attempt to make technical debt management easy and safe will result in humiliation and disaster.”

Most organizations rely on supervisors to communicate the analog of commander’s intent to their subordinates. Currently, it’s fair to say that few supervisors outside the technology-oriented elements of the enterprise communicate much about technical debt to their subordinates.

That situation might explain why most performance management systems encourage behaviors that unwittingly expand the body of technical debt, especially for non-technologist performers. There are situations in which the widely applauded actions of the outstanding performer are such as to incur technical debt strategically and responsibly. Technical debt so incurred is what McConnell calls Type II [McConnell 2008] and what Fowler calls Deliberate and Prudent [Fowler 2009]. But most performance management systems, especially for non-technologists, say nothing about technical debt, and thus risk encouraging behaviors that indirectly exacerbate the problems associated with technical debt.

Distinguishing responsible and irresponsible behaviors is possible only if understanding of the nature of technical debt is widespread in the organization, even beyond the technologists. Here’s an example:

It was ambitious, what advocates called a “stretch goal,” but the VP of Marketing approved the plan to get the new app released by the end of the next fiscal quarter. After a month of meetings, and much jawboning, the CTO agreed to find a way to make it happen, despite serious objections from the VP of New Product Development. Engineers and testers were able to meet the date, but they had to incur significant technical debt, and when they asked for resources to retire that debt after the release, the VP of Marketing opposed the request, because she needed additional resources for the promotional campaign due to our late entry into the market.

Stories like this illustrate scenarios in which technical debt considerations are consistently assigned a lower priority than goals related to market timing, market development, and revenue generation. Standards for setting priorities closely parallel the standards defined in the performance management system. Indeed, the goal of performance management should be to support enterprise goals. In the scenario above, the organization might meet the immediate goal of a successful release, but it does so by incurring technical debt, thereby imperiling the next release. In this scenario, it’s evidently necessary to change the performance management system to achieve a better balance between immediate goals and the near-term future goals.

Since anyone in the enterprise can take actions or make decisions that lead to incurring new technical debt, or cause existing technical debt to remain in place, organizations need performance standards that guide employees with respect to technical debt. To provide guidance for distinguishing responsible behavior from irresponsible behavior, performance management systems must acknowledge the potential of any employee to affect technical debt, constructively or otherwise. Performance management systems must be reviewed with respect to alignment with technical debt policy, and adjusted to encompass a mechanism analogous to Mattis’s vision of commander’s intent.

References

[Fowler 2009] Fowler, Martin. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009. here . Retrieved January 10, 2016.

Cited in:

[Kohn 1999] Alfie Kohn. Punished by rewards: The trouble with gold stars, incentive plans, A's, praise, and other bribes. Boston: Houghton Mifflin Harcourt, 1999.

Order from Amazon

Cited in:

[Mattis 2008] James N. Mattis. “USJFCOM Commander’s Guidance for Effects-based Operations,” Joint Force Quarterly 51, Autumn 2008 105-108.

Available: here Retrieved November 9, 2017.

Cited in:

[McConnell 2008] McConnell, Steve. Managing Technical Debt, white paper, Construx Software, 2008.

Available at: www.construx.com/Page.aspx?cid=2801 Retrieved November 10, 2017.

Cited in:

Related posts

Self-sustaining technical knowledge deficits during contract negotiations

Enterprises that grow by acquisition find themselves acquiring the technological assets of the organizations they acquire. And most enterprises acquire technological assets by other means as well. In either case, the contract negotiation teams need technical knowledge to evaluate and project the effects of these acquisitions on total enterprise technical debt. But as total enterprise technical debt grows, the capacity of enterprise technologists to support new contract negotiations declines, which leads to a self-sustaining cycle of technical knowledge deficits. Policymakers and strategic planners are likely the most effective possible advocates for breaking the cycle by hiring more technologists.

Avoid technical knowledge deficits in important contract negotiations
Contract negotiations can be complex

Negotiating contracts with vendors that provide outsourcing services or subcontracting work, or with organizations to be acquired, requires a sophisticated appreciation of the technical debt status of the assets acquired or to be acquired. The technical debt in question includes more than just the debt borne by the asset as it stands in its pre-acquisition context. It also includes the debt that the asset will carry after it’s inserted into the asset portfolio of the acquiring enterprise.

These two debts — pre-acquisition and post-acquisition — can differ, because the interfaces, standards, and approaches of the acquiring organization likely differ from those prevailing within the vendor organization or the acquired organization. Knowledge of the interfaces, standards, and approaches of both parties to the transaction is therefore required to make a valid assessment of the total post-acquisition levels of technical debt.

The enterprise negotiation team therefore requires the services of technologists who are familiar with the maintenance, extension, and cybersecurity work that will be performed on the acquired assets post-acquisition. When the technical debt situation in the enterprise reaches a level so serious that it requires the full attention of all available technologists, they cannot be spared for negotiating contracts. If this happens, then contract negotiation teams could experience a deficit of knowledge concerning the consequences of acquiring assets laden with technical debt. That leads to increasing levels of non-strategic technical debt, which then has the potential to exacerbate the technical knowledge deficit for the negotiating teams.

This situation is an example of what’s commonly called a vicious cycle. After technical debt has reached a critical level, there are really only two tactics that can break the cycle — get more engineers, or suspend some work.

References

[Fowler 2009] Fowler, Martin. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009. here . Retrieved January 10, 2016.

Cited in:

[Kohn 1999] Alfie Kohn. Punished by rewards: The trouble with gold stars, incentive plans, A's, praise, and other bribes. Boston: Houghton Mifflin Harcourt, 1999.

Order from Amazon

Cited in:

[Mattis 2008] James N. Mattis. “USJFCOM Commander’s Guidance for Effects-based Operations,” Joint Force Quarterly 51, Autumn 2008 105-108.

Available: here Retrieved November 9, 2017.

Cited in:

[McConnell 2008] McConnell, Steve. Managing Technical Debt, white paper, Construx Software, 2008.

Available at: www.construx.com/Page.aspx?cid=2801 Retrieved November 10, 2017.

Cited in:

Related posts

The Dunning-Kruger effect can lead to technical debt

The Dunning-Kruger effect [Kruger 1999] can lead to formation or persistence of technical debt in two ways. First, it can cause technologists or their managers to overestimate their ability to maintain the resource focus needed for retiring technical debt in a timely fashion. Second, it can cause senior managers to be reluctant to accede to resource requests of technologists and their managers in support of technical debt management programs.

Cropped detail from Charles Robert Darwin, a painting by John Collier
Cropped detail from Charles Robert Darwin, a painting by John Collier (1850-1934), given to the National Portrait Gallery, London, in 1896. Darwin writes, in The Descent of Man (1871): “… ignorance more frequently begets confidence than does knowledge …” which is the essence of the Dunning-Kruger effect. Image courtesy WikiQuote.

Kruger and Dunning conducted experiments that yielded results consistent with the following four principles (paraphrasing):

  1. Incompetent individuals, compared to their more competent peers, tend to dramatically overestimate their own ability and performance
  2. Incompetent individuals, compared to their more competent peers, tend to be less able to gain insight into their own true levels of performance
  3. Incompetent individuals can gain insight about their shortcomings, but, paradoxically, this comes about by gaining competence
  4. Incompetent individuals, compared to their more competent peers, are less able to recognize competence when they see it

The first three principles lead to distorted assessments of one’s own capabilities. The fourth principle leads to distorted assessments of the capabilities of others.

As an example of distorted self-assessment, consider a team or its managers who must undertake retirement of some types of technical debt in the course of enhancing or repairing an asset. Such a task plan seems at first to offer efficiencies, because the engineers can readily make both kinds of changes at one go. Metaphorically, if we must go to the store for milk, we can also pick up bread while we are there, rather than making two trips.

However, modifying an existing complex technological asset is unlike shopping for bread and milk. The two kinds of modifications — debt retirement and asset enhancement or repair — might seem at first to be separable, and often they are. But if they are not separable, and the two tasks are undertaken together, testing and debugging can become extremely complicated, because of interactions between defects in the two kinds of modifications. Under some circumstances, an experienced team and its managers might be more likely to anticipate these difficulties. An inexperienced team and its managers might be more likely to underestimate the difficulties, as a consequence of the Dunning-Kruger effect. Budget and schedule overruns are possible consequences of underestimating the complexity of the problem.

As an example of the fourth principle above, the Dunning-Kruger effect can cause some decision-makers to discount the warnings and resource requests of engineers and their managers. Decision-makers who are unsophisticated in matters related to technical debt must nevertheless assess the validity of the requests for resources. In making these assessments, these decision-makers may be disadvantaged for a number of reasons, including the following:

  • Decision-makers might hold any of a number of mistaken beliefs about technical debt. For example, many believe that the main causes of technical debt are poor decisions by engineering managers. And others believe that technical debt is the result of slovenly work habits of engineers. Those who hold such beliefs might be reluctant to allocate yet more resources to engineers to address the problem of technical debt.
  • If the advocates of resources for technical debt management are not fully informed about the strategic direction of the enterprise, their requests might be inconsistent with enterprise strategy. As a result of a cognitive bias known as the halo effect [Thorndike 1920], decision-makers might tend to discount valid portions of the technologists’ proposals, because some portions of those proposals don’t take enterprise strategy into account properly.
  • Decision-makers might be affected by unrealistic optimism [Weinstein 1996], also known as optimism bias. It’s a cognitive bias that can cause them to discount the sometimes-vivid warnings of technologists about the unfavorable consequences of failing to provide technical debt management resources.

Investigations of the degree of correlation between burdens of technical debt and the incidence of rejected or severely curtailed proposals for resources to support technical debt management programs could determine the significance of the Dunning-Kruger effect relative to the problem of technical debt. Also rewarding would be a survey of the nearly 200 known cognitive biases, to determine which of them might be most likely to affect decision-making relative to technical debt, and how best to mitigate the risks they present.

References

[Fowler 2009] Fowler, Martin. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009. here . Retrieved January 10, 2016.

Cited in:

[Kohn 1999] Alfie Kohn. Punished by rewards: The trouble with gold stars, incentive plans, A's, praise, and other bribes. Boston: Houghton Mifflin Harcourt, 1999.

Order from Amazon

Cited in:

[Kruger 1999] J. Kruger and D. Dunning. “Unskilled and Unaware of It: How Difficulties in Recognizing One's Own Incompetence Lead to Inflated Self-Assessments,” Journal of Personality and Social Psychology 77(6), 1121-1134 (1999).

Cited in:

[Mattis 2008] James N. Mattis. “USJFCOM Commander’s Guidance for Effects-based Operations,” Joint Force Quarterly 51, Autumn 2008 105-108.

Available: here Retrieved November 9, 2017.

Cited in:

[McConnell 2008] McConnell, Steve. Managing Technical Debt, white paper, Construx Software, 2008.

Available at: www.construx.com/Page.aspx?cid=2801 Retrieved November 10, 2017.

Cited in:

[Thorndike 1920] E.L. Thorndike “A constant error in psychological ratings,” Journal of Applied Psychology, 4(1), 25-29 (1920). doi:10.1037/h0071663

Cited in:

[Weinstein 1996] Neil D. Weinstein and William M. Klein. “Unrealistic Optimism: Present and Future,” Journal of Social and Clinical Psychology 15(1), 1-8 (1996). doi:10.1521/jscp.1996.15.1.1

Cited in:

Related posts

Team composition volatility

Team composition volatility can interfere with technical debt retirement. In many organizations, project team composition is rarely fixed from beginning to end. In most teams, people who have special knowledge cycle in and out as the work requires. Although these changes in team composition might not interfere with completing a team’s primary objectives, they can affect the team’s ability to retire technical debt that the team incurs over the life of the project. Changes in team composition can also limit the team’s ability to retire specified legacy technical debt that it encounters while working toward its primary objectives.

Now we know what we should have done.
“Now we know what we should have done.” This is one kind of incremental technical debt. When the composition of a development team changes over the course of project, recognizing how things should have been done can become more difficult.

Changes in team composition can increase the likelihood of incurring non-strategic incremental technical debt, and increase the likelihood of failing to retire all legacy debt specified in the team’s objectives.

Most product development, maintenance, and enhancement is carried out in groups we call teams. In this context, team is usually defined as, “a small group of interdependent individuals who share responsibility for outcomes.” [Hollenbeck 2012] However, as Hollenbeck et al. observe, teams vary widely in both skill differentiation and composition stability. My sense is that both factors can potentially influence a team’s ability to retire incremental technical debt. They also affect its ability to achieve its objectives with respect to retiring legacy technical debt.

For example, consider what Fowler calls the Inadvertent/Prudent class of technical debt — “Now we know how we should have done it.” [Fowler 2009] In a project of significant size, some might recognize that different approaches to all or parts of it would have been more effective than the ones that were chosen. The recognition might come several months, or even years, after the work affected was conceived or even completed.

But for the moment, consider only cases in which the recognition occurs during the project, or shortly after completion. In these cases, the people who performed that work might have moved on to other teams in need of their talents and abilities. The people who now realize “how we should have done it” might not be themselves capable of making the needed changes, even if they have the budget or time to do the work. Or worse, they might not have the knowledge needed to recognize that a different approach would have been more effective. In either case, recognized or not, the work performed by the people no longer on the team comprises incremental technical debt. Because of team composition volatility, recognizing or retiring that incremental technical debt can be difficult.

Team composition volatility can also interfere with retiring legacy technical debt. Some projects are specifically charged with retiring a class or classes of legacy technical debt. But others with different objectives might also be charged with retiring instances of specific kinds of legacy technical debt as they encounter them. When team members with special knowledge required for the team’s primary objectives are reassigned, some legacy technical debt can remain un-retired, if retiring that debt from the context in which it occurs requires their special knowledge, and if the reassignment occurs before they can complete the legacy debt retirement. This mechanism is more likely to occur when the legacy debt retirement objective is viewed as subordinate to other business objectives.

Keeping team membership stable has big advantages relative the technical debt management. Said differently, organizations that must shuffle people from team to team as a consequence of controlling costs by reducing headcount can pay big penalties in terms of increasing loads of technical debt.

References

[Fowler 2009] Fowler, Martin. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009. here . Retrieved January 10, 2016.

Cited in:

[Fowler 2009] Fowler, Martin. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009. here . Retrieved January 10, 2016.

Cited in:

[Hollenbeck 2012] John R. Hollenbeck, Bianca Beersma, and Maartje E. Schouten. “Beyond Team Types and Taxonomies: A Dimensional Scaling Conceptualization for Team Description,” Academy of Management Review, 37(1), 82–106 (2012). doi:10.5465/amr.2010.0181

Available: here Retrieved: July 8, 2017

Cited in:

[Kohn 1999] Alfie Kohn. Punished by rewards: The trouble with gold stars, incentive plans, A's, praise, and other bribes. Boston: Houghton Mifflin Harcourt, 1999.

Order from Amazon

Cited in:

[Kruger 1999] J. Kruger and D. Dunning. “Unskilled and Unaware of It: How Difficulties in Recognizing One's Own Incompetence Lead to Inflated Self-Assessments,” Journal of Personality and Social Psychology 77(6), 1121-1134 (1999).

Cited in:

[Mattis 2008] James N. Mattis. “USJFCOM Commander’s Guidance for Effects-based Operations,” Joint Force Quarterly 51, Autumn 2008 105-108.

Available: here Retrieved November 9, 2017.

Cited in:

[McConnell 2008] McConnell, Steve. Managing Technical Debt, white paper, Construx Software, 2008.

Available at: www.construx.com/Page.aspx?cid=2801 Retrieved November 10, 2017.

Cited in:

[Thorndike 1920] E.L. Thorndike “A constant error in psychological ratings,” Journal of Applied Psychology, 4(1), 25-29 (1920). doi:10.1037/h0071663

Cited in:

[Weinstein 1996] Neil D. Weinstein and William M. Klein. “Unrealistic Optimism: Present and Future,” Journal of Social and Clinical Psychology 15(1), 1-8 (1996). doi:10.1521/jscp.1996.15.1.1

Cited in:

Related posts

Technological communication risk

Technologists must convey what they know about long-term technology trends to enterprise strategists and others. In addition to strategists, the interested parties include internal customers of technology, product owners, product managers, project sponsors, or senior management. Within the enterprise, technologists tend to be among those most knowledgeable regarding the relative alignment between enterprise technological assets and long-term technology trends. Yet technologists frequently fail to communicate this knowledge effectively to those who need it, and that can lead to non-strategic technical debt. I call this phenomenon technological communication risk.

See no evil, hear no evil, speak no evil
Hear no evil, see no evil, speak no evil — the iconic representation of communication failure. Technical debt can result from communication failures due to unwillingness to inform others of what you know, and unwillingness to receive information from others more knowledgeable.

Technological communication risk is the risk that knowledgeable people within the enterprise don’t communicate important knowledge to the people who need it, or the people who need it aren’t receptive to it. Policymakers can address this problem by working to define the roles of all involved to specify the need for this communication, and the need to be receptive to it.

A clear understanding of long-term technology trends is important in managing technical debt. Any significant misalignment between enterprise technological assets and long-term technology trends creates a risk of incurring new technical debt. As technologies evolve, enterprise assets must evolve with them. The gap between those assets and the state of the art is a source of lost productivity and depressed organizational agility, which is our definition of technical debt.

Some technologists are better informed about technology trends than are their internal customers, product owners, product managers, project sponsors, or senior management. Technologists often do attempt to communicate what they know on an informal basis, but unless such communication is expected and defined as an official duty, their superiors and internal customers don’t always welcome the information, especially if they haven’t heard it elsewhere, or if it conflicts with what they’ve learned elsewhere, or if its implications conflict with established strategic positions.

Many technologists are aware that their superiors might not welcome their observations about technological trends or technology-based strategic vulnerabilities or opportunities. For example, one might understand why a technologist might be reluctant to alert an unreceptive senior manager to a suddenly revealed cybersecurity risk that would be very expensive to mitigate. This mechanism is especially strong when deploying adequate cyberdefense would compete for resources with other initiatives already underway, or when the negative consequences of the vulnerability are unlikely to materialize. And some tend to question technologists’ credibility when they blame the technologists for the vulnerability itself.

Situations like these can lead to the formation of new non-strategic technical debt in circumstances such as the following:
  • Management directs the technologists to produce capabilities using approaches known to the technologists to be technological dead ends.
  • Management directs the technologists to implement capabilities that don’t exploit known approaches that could open new and vital lines of business.
  • Management directs the technologists to focus resources on initiatives that in the view of the technologists lack sufficient technological imperative.

Policymakers can mitigate technological communication risk by establishing internal standards that encourage knowledgeable technologists to share what they know with internal customers, project sponsors, or senior management. Similarly, those standards can encourage internal customers, project sponsors, product owners, product managers, and senior management to take heed when knowledgeable technologists do speak up.

References

[Fowler 2009] Fowler, Martin. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009. here . Retrieved January 10, 2016.

Cited in:

[Fowler 2009] Fowler, Martin. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009. here . Retrieved January 10, 2016.

Cited in:

[Hollenbeck 2012] John R. Hollenbeck, Bianca Beersma, and Maartje E. Schouten. “Beyond Team Types and Taxonomies: A Dimensional Scaling Conceptualization for Team Description,” Academy of Management Review, 37(1), 82–106 (2012). doi:10.5465/amr.2010.0181

Available: here Retrieved: July 8, 2017

Cited in:

[Kohn 1999] Alfie Kohn. Punished by rewards: The trouble with gold stars, incentive plans, A's, praise, and other bribes. Boston: Houghton Mifflin Harcourt, 1999.

Order from Amazon

Cited in:

[Kruger 1999] J. Kruger and D. Dunning. “Unskilled and Unaware of It: How Difficulties in Recognizing One's Own Incompetence Lead to Inflated Self-Assessments,” Journal of Personality and Social Psychology 77(6), 1121-1134 (1999).

Cited in:

[Mattis 2008] James N. Mattis. “USJFCOM Commander’s Guidance for Effects-based Operations,” Joint Force Quarterly 51, Autumn 2008 105-108.

Available: here Retrieved November 9, 2017.

Cited in:

[McConnell 2008] McConnell, Steve. Managing Technical Debt, white paper, Construx Software, 2008.

Available at: www.construx.com/Page.aspx?cid=2801 Retrieved November 10, 2017.

Cited in:

[Thorndike 1920] E.L. Thorndike “A constant error in psychological ratings,” Journal of Applied Psychology, 4(1), 25-29 (1920). doi:10.1037/h0071663

Cited in:

[Weinstein 1996] Neil D. Weinstein and William M. Klein. “Unrealistic Optimism: Present and Future,” Journal of Social and Clinical Psychology 15(1), 1-8 (1996). doi:10.1521/jscp.1996.15.1.1

Cited in:

Related posts

Failure to communicate the technical debt concept

The behavior of internal customers and users of enterprise technological assets can contribute to technical debt formation and persistence. Because of these contributions, introducing effective technical debt management practices requires widespread behavioral changes on the part of those internal customers and users. Accepting these changes, and the initiative and creativity they require, is possible only if people understand the technical debt concept. When they do, they can appreciate the benefits of controlling technical debt, and the consequences of failing to control it. Similarly, when they do not understand or accept the technical debt concept, progress toward effective technical debt management is unlikely. Policymakers can contribute to the planning and execution of the required organizational transformation.

Even when the engineering teams are aware of the technical debt concept, and when they do try to manage technical debt, they cannot make much progress unless they have the support and understanding of their own management, their internal customers, and their customers’ managements. Everyone must understand that controlling technical debt — and retiring it — is a necessary engineering activity that has a business purpose. Everyone must understand that technical debt arises as a result of everyone’s behavior — not just the behavior of technologists.

A tensegrity 3-prism
A tensegrity three-prism. . Read about tensegrity structures.
Image (cc) Bob Burkhardt courtesy Wikimedia.
Part of the job of Management is to see that engineers have what they need to avoid incurring technical debt unnecessarily, and that they have what they need to retire elements of legacy technical debt on a regular basis. Internal customers must understand that communicating their long-term business strategies to Engineering is essential for limiting unnecessary creation of artifacts that become non-strategic technical debt. Only by understanding the technical debt concept can internal customers learn to avoid the behaviors that lead to non-strategic technical debt, and adopt behaviors that limit new technical debt.

Tensegrity structures provide a metaphor for organizations that have mastered the technical debt concept. Tensegrity structures use isolated rigid components in compression, held by a network of strings or cables in tension. The rigid components are usually struts or masts, and they aren’t in contact with each other.

The struts correspond to the users or customers of technological assets. The cables correspond to the engineering activities required to support the customers. The organization is stable relative to technical debt only when the two kinds of elements (struts and cables) work together, each playing its own role, but each appreciating the role of the other.

Advocating for cultural transformation

Advocates of any change to organizational culture are often seen as acting in their own self-interest. That’s a common risk associated with cultural transformation. It’s a risk that can lead to failure when inserting practices related to technical debt management into the culture. The risk is greatest when advocates for change are drawn exclusively from the technical elements of the enterprise. The ideal advocates for these ideas and practices are the internal customers of the technical organizations, and senior management.

References

[Fowler 2009] Fowler, Martin. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009. here . Retrieved January 10, 2016.

Cited in:

[Fowler 2009] Fowler, Martin. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009. here . Retrieved January 10, 2016.

Cited in:

[Hollenbeck 2012] John R. Hollenbeck, Bianca Beersma, and Maartje E. Schouten. “Beyond Team Types and Taxonomies: A Dimensional Scaling Conceptualization for Team Description,” Academy of Management Review, 37(1), 82–106 (2012). doi:10.5465/amr.2010.0181

Available: here Retrieved: July 8, 2017

Cited in:

[Kohn 1999] Alfie Kohn. Punished by rewards: The trouble with gold stars, incentive plans, A's, praise, and other bribes. Boston: Houghton Mifflin Harcourt, 1999.

Order from Amazon

Cited in:

[Kruger 1999] J. Kruger and D. Dunning. “Unskilled and Unaware of It: How Difficulties in Recognizing One's Own Incompetence Lead to Inflated Self-Assessments,” Journal of Personality and Social Psychology 77(6), 1121-1134 (1999).

Cited in:

[Mattis 2008] James N. Mattis. “USJFCOM Commander’s Guidance for Effects-based Operations,” Joint Force Quarterly 51, Autumn 2008 105-108.

Available: here Retrieved November 9, 2017.

Cited in:

[McConnell 2008] McConnell, Steve. Managing Technical Debt, white paper, Construx Software, 2008.

Available at: www.construx.com/Page.aspx?cid=2801 Retrieved November 10, 2017.

Cited in:

[Thorndike 1920] E.L. Thorndike “A constant error in psychological ratings,” Journal of Applied Psychology, 4(1), 25-29 (1920). doi:10.1037/h0071663

Cited in:

[Weinstein 1996] Neil D. Weinstein and William M. Klein. “Unrealistic Optimism: Present and Future,” Journal of Social and Clinical Psychology 15(1), 1-8 (1996). doi:10.1521/jscp.1996.15.1.1

Cited in:

Related posts

Failure to communicate long-term business strategy

Failure to communicate long-term business strategy can lead to increased technical debt, because engineering decisions that aren’t aligned with business strategy can result in what later becomes technical debt. As business strategy veers away from the assumptions underlying those misaligned engineering decisions, engineers must alter implementations to track the strategy. Technical debt can form during those alteration efforts. Moreover, the expenditure of resources to support those alteration efforts might have been unnecessary if engineers had been better informed about long-term business strategy. In some cases, those resources could have been allocated to other pursuits, including technical debt retirement. To ensure alignment of engineering decisions with long-term business strategy, engineering decision-makers must be aware of long-term and intermediate-term enterprise strategy. When they’re well informed, they can anticipate the engineering needs of the enterprise. And they’re more likely to make decisions that are compatible with strategy.

A plug-in electric vehicle being recharged
Recharging a  plug-in electric vehicle. The dominance of petroleum-powered vehicles is nearing its end. Further investment in the petroleum-based fuels infrastructure is now  inconsistent with what the global economy has chosen as its strategic intent. Electric vehicles are still out of the reach of most consumers, but they would be wise to favor long range vehicles. As electric vehicles become ascendant, petroleum filling stations will become more widely spaced. During the transition to electric power dominance, long-range petroleum-powered vehicle offers clear advantages over its shorter-range cousins.

Moreover, the effect is bi-directional. Strategists can benefit from understanding the effect their strategies have on technological activity. For example, consider the process of choosing among strategic options. A favorable outcome is more likely if strategists know the effects of each option on the technical debt portfolio.

To gain effective control of technical debt, senior management must regard the technical elements of the enterprise as strategic partners [Woodard 2013] [Ross 2000] [Brenner 2016a]. Policymakers can make important contributions to enhancing communication between strategists and technologists.

For example, when engineers know the general direction of the enterprise, they can focus efforts on assets that are compatible with future needs. Inversely, when they’re unaware of what the business strategy might soon require, they’re more likely to make decisions that they must later rescind.

What about legacy technical debt retirement?

Analogous considerations apply to legacy technical debt  retirement efforts. Major technical debt retirement efforts are often subject to review for alignment with enterprise strategy. But we tend not to review incidental retirement efforts that occur in the context of routine maintenance or development. Consequently, engineers might allocate effort to incidental  debt retirement unnecessarily if the asset is due for overhaul or replacement. Communicating long-term strategy effectively is likely the most reliable way to prevent such misspent effort.

Some managers elect to communicate business strategy to technologists only when they “need to know.” Often, technologists needed to know long before that.

References

[Brenner 2016a] Richard Brenner. “The Psychology and Politics of Technical Debt: How We Incur Technical Debt and Why Retiring It Is So Difficult,” Cutter Business Technology Journal, 29:3, 2016, 21-27.

Cited in:

[Fowler 2009] Fowler, Martin. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009. here . Retrieved January 10, 2016.

Cited in:

[Fowler 2009] Fowler, Martin. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009. here . Retrieved January 10, 2016.

Cited in:

[Hollenbeck 2012] John R. Hollenbeck, Bianca Beersma, and Maartje E. Schouten. “Beyond Team Types and Taxonomies: A Dimensional Scaling Conceptualization for Team Description,” Academy of Management Review, 37(1), 82–106 (2012). doi:10.5465/amr.2010.0181

Available: here Retrieved: July 8, 2017

Cited in:

[Kohn 1999] Alfie Kohn. Punished by rewards: The trouble with gold stars, incentive plans, A's, praise, and other bribes. Boston: Houghton Mifflin Harcourt, 1999.

Order from Amazon

Cited in:

[Kruger 1999] J. Kruger and D. Dunning. “Unskilled and Unaware of It: How Difficulties in Recognizing One's Own Incompetence Lead to Inflated Self-Assessments,” Journal of Personality and Social Psychology 77(6), 1121-1134 (1999).

Cited in:

[Mattis 2008] James N. Mattis. “USJFCOM Commander’s Guidance for Effects-based Operations,” Joint Force Quarterly 51, Autumn 2008 105-108.

Available: here Retrieved November 9, 2017.

Cited in:

[McConnell 2008] McConnell, Steve. Managing Technical Debt, white paper, Construx Software, 2008.

Available at: www.construx.com/Page.aspx?cid=2801 Retrieved November 10, 2017.

Cited in:

[Ross 2000] Ross, Jeanne W., and David F. Feeny. “The Evolving Role of the CIO,” in Framing the Domains of IS Management Research: Glimpsing the Future through the Past, edited by Robert W. Zmud. Pinnaflex, 2000.

Available: here Retrieved: December 20, 2017.

Cited in:

[Thorndike 1920] E.L. Thorndike “A constant error in psychological ratings,” Journal of Applied Psychology, 4(1), 25-29 (1920). doi:10.1037/h0071663

Cited in:

[Weinstein 1996] Neil D. Weinstein and William M. Klein. “Unrealistic Optimism: Present and Future,” Journal of Social and Clinical Psychology 15(1), 1-8 (1996). doi:10.1521/jscp.1996.15.1.1

Cited in:

[Woodard 2013] C. Jason Woodard, Narayan Ramasubbu, F. Ted Tschang, and V. Sambamurthy. “Design Capital and Design Moves: the Logic of Digital Business Strategy,” MIS Quarterly 37(2), 537-564 (2013).

Cited in:

Related posts

Non-technical precursors of non-strategic technical debt

Non-strategic technical debt is technical debt that appears in the asset without strategic purpose. We tend to introduce non-strategic technical debt by accident, or as the result of urgency, or from changes in standards, laws, or regulations—almost any source other than asset-related engineering purposes. In this group of posts I examine a variety of precursors of non-strategic technical debt that are not directly related to technology. Sources of these precursors include:

  • Communication between and among people
  • Organizational policies relating to job assignments
  • Cognitive biases
  • Performance management policy
  • Incentive structures
  • Organizational structures
  • Contract language
  • Outsourcing
  • …and approaches to dealing with budget depletion.

The cables of the Brooklyn Bridge are an example of non-strategic technical debt
Some of the suspension cables of the Brooklyn Bridge. Washington Roebling, the chief engineer, designed the cables to be composed of 19 “strands” of wire rope [McCullough 1972]. Each strand was to be made of 278 steel wires. Thus, the original design called for a total of 5,282 wires in each of the main cables. After the wire stringing began, the bridge company made an unsettling discovery. The wire supplier, J. Lloyd Haigh, had been delivering defective wire by circumventing the bridge company’s stringent inspection procedures. In all, Roebling estimated that 221 U.S. tons (200 metric tons) of rejected wire had been installed in the bridge. This was a significant fraction of the planned total weight of 3,400 U.S. tons (3,084 metric tons). Because they couldn’t remove the defective wire, Roebling decided to add about 150 wires to each main cable. That extra wire would be provided at no charge by Haigh [Talbot 2011]. I can’t confirm this, but I suspect that Roebling actually added 152 wires, which would be eight wires for each of the 19 strands, to make a total of 286 wires per strand, for a total of 5,434 wires. The presence of the defective wire in the bridge cables—which remains to this day—is an example of technical debt. The fraud perpetrated by Haigh illustrates how malfeasance can lead to technical debt.
I use the term precursor instead of cause because none of these conditions leads to technical debt inevitably. From the perspective of the policymaker, we can view these conditions as risks. It’s the task of the policymaker to devise policies that manage these risks.

McConnell has classified technical debt in a framework that distinguishes responsible forms of technical debt from other forms [McConnell 2008]. Briefly, we incur some technical debt strategically and responsibly, and we retire it when the time is right. We incur other technical debt for other reasons, some of which are inconsistent with enterprise health and wellbeing.

The distinction is lost on many. Unfortunately, most technical debt is non-strategic. We would have been better off  if we had never created it. Or if we had retired it almost immediately. In any case we should have retired it long ago.

It’s this category of non-strategic technical debt that I deal with in this group of posts. Although all technical debt is unwelcome, we’re especially interested in non-strategic technical debt, because it is usually uncontrolled. In these posts I explore the non-technical mechanisms that lead to formation of non-strategic technical debt. Schedule pressure is one exception. Because it’s so important, it deserves a thread of its own. I’ll address it later.

Common precursors of non-strategic technical debt

Here are some of the more common precursors of non-strategic technical debt.

I’ll be adding posts on these topics, so check back often, or subscribe to receive notifications when they’re available.

References

[Brenner 2016a] Richard Brenner. “The Psychology and Politics of Technical Debt: How We Incur Technical Debt and Why Retiring It Is So Difficult,” Cutter Business Technology Journal, 29:3, 2016, 21-27.

Cited in:

[Fowler 2009] Fowler, Martin. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009. here . Retrieved January 10, 2016.

Cited in:

[Fowler 2009] Fowler, Martin. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009. here . Retrieved January 10, 2016.

Cited in:

[Hollenbeck 2012] John R. Hollenbeck, Bianca Beersma, and Maartje E. Schouten. “Beyond Team Types and Taxonomies: A Dimensional Scaling Conceptualization for Team Description,” Academy of Management Review, 37(1), 82–106 (2012). doi:10.5465/amr.2010.0181

Available: here Retrieved: July 8, 2017

Cited in:

[Kohn 1999] Alfie Kohn. Punished by rewards: The trouble with gold stars, incentive plans, A's, praise, and other bribes. Boston: Houghton Mifflin Harcourt, 1999.

Order from Amazon

Cited in:

[Kruger 1999] J. Kruger and D. Dunning. “Unskilled and Unaware of It: How Difficulties in Recognizing One's Own Incompetence Lead to Inflated Self-Assessments,” Journal of Personality and Social Psychology 77(6), 1121-1134 (1999).

Cited in:

[Mattis 2008] James N. Mattis. “USJFCOM Commander’s Guidance for Effects-based Operations,” Joint Force Quarterly 51, Autumn 2008 105-108.

Available: here Retrieved November 9, 2017.

Cited in:

[McConnell 2008] McConnell, Steve. Managing Technical Debt, white paper, Construx Software, 2008.

Available at: www.construx.com/Page.aspx?cid=2801 Retrieved November 10, 2017.

Cited in:

[McConnell 2008] McConnell, Steve. Managing Technical Debt, white paper, Construx Software, 2008.

Available at: www.construx.com/Page.aspx?cid=2801 Retrieved November 10, 2017.

Cited in:

[McCullough 1972] McCullough, David. The Great Bridge: The epic story of the building of the Brooklyn Bridge. New York: Simon and Schuster, 1972.

Order from Amazon

Cited in:

[Ross 2000] Ross, Jeanne W., and David F. Feeny. “The Evolving Role of the CIO,” in Framing the Domains of IS Management Research: Glimpsing the Future through the Past, edited by Robert W. Zmud. Pinnaflex, 2000.

Available: here Retrieved: December 20, 2017.

Cited in:

[Talbot 2011] Talbot, J. “The Brooklyn Bridge: First Steel-Wire Suspension Bridge.” Modern Steel Construction 51.6 (2011): 42-46.

Available: here Retrieved: December 20, 2017.

Cited in:

[Thorndike 1920] E.L. Thorndike “A constant error in psychological ratings,” Journal of Applied Psychology, 4(1), 25-29 (1920). doi:10.1037/h0071663

Cited in:

[Weinstein 1996] Neil D. Weinstein and William M. Klein. “Unrealistic Optimism: Present and Future,” Journal of Social and Clinical Psychology 15(1), 1-8 (1996). doi:10.1521/jscp.1996.15.1.1

Cited in:

[Woodard 2013] C. Jason Woodard, Narayan Ramasubbu, F. Ted Tschang, and V. Sambamurthy. “Design Capital and Design Moves: the Logic of Digital Business Strategy,” MIS Quarterly 37(2), 537-564 (2013).

Cited in:

Related posts