Three cognitive biases

Last updated on July 10th, 2021 at 08:49 am

Technical debt arises in enterprise assets through the effects of two classes of drivers: obsolescence and decision-making. When technologies advance, or new technologies arise, or laws or regulations evolve. Existing assets or assets under development can sometimes be left behind. That’s how obsolescence produces technical debt. Debt driven mainly by decision-making is more difficult to describe. But anything that biases decisions away from strictly rational results presents risk. Three cognitive biases likely have strong effects on technical debt formation and persistence.

Cognitive biases affect decision-making

Photo of Daniel Ellsberg, speaking at a press conference in New York City in 1972
Photo of Daniel Ellsberg, speaking at a press conference in New York City in 1972. Best known for his role in releasing the Pentagon Papers, Dr. Ellsberg made important contributions to decision theory while at the RAND Corporation. Photo by Bernard Gotfryd, courtesy U.S. Library of Congress.
Decision-making produces technical debt as the people of the enterprise make choices in design, development, and resource acquisition or allocation. Typically, both obsolescence and decision-making contribute to producing technical debt, though either obsolescence or decision-making might be more important than the other in any given instance.

Managing debt driven principally by obsolescence isn’t difficult, but I’ll leave that topic for another time. For now, let’s focus on decision-making. Already widely accepted is the contribution of engineering decisions to technical debt formation. Indeed, many believe (in my view, incorrectly) that all or most technical debt arises from faulty decisions by engineers. Some engineering decisions are indeed faulty. But the current scale of technical debt is so large that faulty engineering is unlikely to account for it all. Investigating how resource allocation decisions might contribute to technical debt formation is certainly worthwhile.

In this post, I offer three examples illustrating how resource allocation decisions might contribute to technical debt formation and persistence. Each example shows how people make faulty decisions while believing they’re proceeddecision makering objectively and rationally. In each case, what causes the problem is a phenomenon called cognitive bias, though each example in this post illustrates the action of a different cognitive bias.

Loss aversion

Amos Tversky and Daniel Kahneman were the first to identify the cognitive bias known as loss aversion [Kahneman 1984]. It’s the tendency to favor options that avoid losses in preference to options that lead to equivalent or even greater gains. A decision maker affected by loss aversion bias might conclude that not losing $5 is better than finding $5 or even $10. In this way, loss aversion skews decisions in favor of options that enable the enterprise to protect or enhance existing revenue streams. And it skews decisions in this way even if those decisions cause increases in operating expenses. This bias has effect even if the increases in operating expenses exceed the value of whatever revenue that decision protected.

Short term effects of loss aversion

Retiring technical debt usually entails deferring revenue in the short term, for two classes of reasons. First, we must turn the attention of some part of the engineering organization to debt retirement. Assuming that they would have been working on maintaining or enhancing existing products or services, this redirection can lead to reducing or deferring revenue. Second, during the debt retirement operation, some work might require short-term interruptions of revenue streams while the work is underway.

Thus, debt retirement efforts often do reduce revenue—or reduce revenue increases—in the short term. Some decision makers can perceive that effect as a loss.

Long term effects of loss aversion

The long-term effects of debt retirement can be gains, and those gains can be considerable. Typically, by retiring an asset’s technical debt, we reduce the difficulty (read: time required, effort, cost, and risk) of future maintenance and enhancement efforts involving the asset. We also reduce the probability of debt contagion.

Since these long-term effects of debt retirement are ongoing, their impact on the enterprise can be significant. But unless one is familiar with dealing with the consequences of technical debt, recognizing the value of retiring technical debt can be difficult. When loss aversion is in play, intuitive comparisons of the effects of (a) a short-term revenue loss or delay to (b) a long-term benefit of debt retirement favor development and maintenance over retiring technical debt.

Insulating decisions about debt retirement from the effects of loss aversion bias requires objective mathematical modeling of revenue losses and operating cost benefits for all options under consideration. Those models must also account for uncertainty, which makes them inherently ambiguous. And that leads us to consider our next cognitive bias, the ambiguity effect.

The ambiguity effect

The ambiguity effect is a cognitive bias that causes us to prefer options for which the probability of a desirable outcome is relatively better known, over options for which the probability of a desirable outcome is less well known, even if the expected value of that more ambiguous outcome exceeds the expected value of the less ambiguous outcome. The effect was first described by Daniel Ellsberg [Ellsberg 1961].

Consider a choice between allocating resources to new development and allocating resources to technical debt retirement. In most enterprises, decision makers are familiar with new development projects. Likewise, project champions, project sponsors, and project managers are also familiar with new development projects. All parties are less familiar with debt retirement. It’s reasonable to suppose that when confronted with such a choice, decision makers are likely to see debt retirement as carrying with it a probability of positive outcome that is less well known than the probability of a positive outcome for the new development project.

Because of the ambiguity effect, resource allocation decisions are likely to be biased against technical debt retirement, and in favor of maintenance or new development.

But there’s more. Most projects, of any kind, encounter trouble from time to time. When that happens, the urge to reallocate organizational resources can be powerful. Troubled projects might receive more resources if they’re viewed as important to the organization. If so, those resources often come from other projects. The ambiguity effect biases these resource reallocation decisions in a way analogous to initial resource allocation decisions, as described above. In other words, because of the ambiguity effect, when projects encounter trouble, debt retirement projects are less likely to be able to retain previously allocated resources than are maintenance or new development projects.

The availability heuristic

The availability heuristic is a method humans use to evaluate the validity or effectiveness of decisions, concepts, methods, or propositions [Tversky 1973]. According to the heuristic, if we recognize the item being evaluated as familiar, or related to something with which we are familiar, we’re more likely to regard it as valid or workable. And when making comparisons between two alternative decisions, concepts, methods, or propositions, we’re likely to assess more favorably the decision, concept, method, or proposition with which we’re more familiar, all other things being equal.

In organizations where decision makers have more experience evaluating maintenance or development project proposals than they have with technical debt retirement proposals, the availability heuristic acts to reduce the relative assessed favorability of technical debt retirement proposals. It does this in three ways.

Technical debt retirement projects are less familiar

First, in most organizations, technical debt retirement projects are less familiar to decision makers than are maintenance or development projects. On that ground alone the technical debt retirement project proposals are at a disadvantage.

The effects of retiring technical debt are less obvious

But the second effect of the availability heuristic is more important. To grasp the value of working on an asset, we must understand how it will affect the asset’s users. Likewise, to grasp the value of a technical debt retirement project, we must understand how technical debt hampers the enterprise. We must also understand how retiring the technical debt might confer advantages in terms of future engineering efforts. Usually, understanding the consequences of maintenance or development projects is more “available” to decision makers than is understanding the consequences of technical debt retirement projects. Even more dramatic is the difference between understanding the consequences of not funding a maintenance or development project and the consequences of not funding a technical debt retirement project.

Much of the benefit of technical debt retirement is indirect

That is, although there is some direct benefit in terms of the assets from which the debt has been retired, the most dramatic benefits are manifested in projects that follow the debt retirement project, and which depend on the assets that have been relieved of debt. Sometimes, those follow-on projects are known at the time decision makers are considering funding the debt retirement project. Sometimes those follow-on projects have yet to be specified or even recognized. In either case, they are less “available” to decision makers because those follow-on projects are indirect beneficiaries.

These three effects of the availability heuristic cause decisions about resource allocations to tend to favor maintenance or development projects over debt retirement projects.

Mitigating the risks of these three cognitive biases

Over time, as everyone becomes more familiar with technical debt retirement projects, these effects may wane somewhat. But waiting for that to happen isn’t exactly what one might call risk mitigation. For one thing, familiarity grows only if one is motivated and pays attention. As busy as are decision makers in modern organizations, depending on them to actively enhance their own familiarity with technical debt retirement projects is probably not the safest course.

An effective program of actively mitigating the risks of these three cognitive biases probably should focus on four areas.

Familiarity

Do what you can to increase decision maker familiarity with the concept of technical debt, and with the consequences of carrying existing technical debt. Conventional presentation-based training will help, but interactive, experiential training is far more effective. Participants must actually experience the consequences of technical debt in a well-designed and professionally facilitated simulation of a problem-solving task. A faithful simulation would include estimation, changing and ambiguous requirements, and team composition volatility.

Retrospectives

Retrospectives are also known as after-action reviews, post mortems, debriefings, or lessons-learned sessions. They’re meetings that review processes that have just completed pieces of work [Kerth 2001]. Typically, only project team members attend. To maintain psychological safety and to encourage truth telling, enterprise decision makers and supervisors don’t attend, unless the organizational culture includes appropriate safeguards. In any case, a section of the retrospective dedicated to investigating the causes and consequences of technical debt can ensure capture of relevant knowledge and experience.

Mathematical modeling practice

Mathematical modeling is one path to creating a more objective foundation for decisions. It’s essential for improving estimation quality. Also helpful are high quality effort data and metrics data related to the formation and lifetime of technical debt. Reviews of estimates and projections during retrospectives can help improve their quality over time.

Metrics development

Determining the effects of risk mitigation failure provides important guidance for corrective action in risk mitigation. Developing metrics that reveal these failures is therefore essential to managing cognitive bias risk. I’ll be suggesting some valuable metrics in a future post.

Last words

These three cognitive biases are by no means the only cognitive biases that can affect the formation or persistence of technical debt. Of the more than 200 identified cognitive biases, those most likely to be relevant are those that affect decision-making. Watch this space for links to posts about additional cognitive biases and their affects on technical debt formation or persistence.

Other posts relating to cognitive biases

References

[Ellsberg 1961] Daniel Ellsberg. "Risk, ambiguity, and the Savage axioms." The quarterly journal of economics, 643-669, 1961.

Available: here; Retrieved: August 17, 2018.

Cited in:

[Kahneman 1984] Daniel Kahneman, Amos Tversky, and Michael S. Pallak. “Choices, values, and frames,” American Psychologist 39:4, 341-350, 1984.

Available: here; Retrieved: August 8, 2017

Cited in:

[Kerth 2001] Norman L. Kerth. Project Retrospectives: A Handbook for Team Reviews. New York: Dorset House, 2001.

Order from Amazon

Cited in:

[Tversky 1973] Amos Tversky and Daniel Kahneman. "Availability: A heuristic for judging frequency and probability." Cognitive Psychology 5:2, 207-232, 1973.

Available: here; Retrieved: August 9, 2018.

Cited in:

Other posts in this thread

Exogenous technical debt

Last updated on July 9th, 2021 at 04:58 pm

Exogenous technical debt is debt that arises from causes not directly related to the asset that bears the debt. Mastering understanding of exogenous technical debt is essential to controlling technical debt formation. Exogenous technical debt is particularly troublesome to those who work on the affected assets. They can’t control its formation, and they’re rarely responsible for creating it. But their internal customers and those who control resources often fail to understand this. Indeed, those who work on the affected assets often bear blame for the formation of exogenous technical debt even though they had no role in its formation, and could have done nothing to prevent its formation.

Exogenous technical debt and endogenous technical debt

Technical debt is exogenous when it’s brought about by an activity not directly related to the assets in which the debt appears. The word exogenous comes from the Greek exo– (outside) + –genous (related to producing). So exogenous technical debt is that portion of an asset’s debt that comes about from activities or decisions that don’t involve the asset directly.

Why we must track exogenous technical debt

Asbestos with muscovite.
Asbestos with muscovite. Asbestos is a family of minerals occurring naturally in fibrous form. The fibers are all known carcinogens. Until 1990, asbestos was a common ingredient of building materials, including insulation, plaster, and drywall joint compound. It’s now banned, but it’s present in existing homes and offices. The ban caused these structures to incur exogenous technical debt. Photo by Aramgutang courtesy Wikipedia.

Because so much technical debt arises indirectly, controlling its direct formation is insufficient to achieve control. To control technical debt formation, we must track which activities produce it. We must track both direct and indirect effects. Allocating technical debt retirement costs to the activities that brought that debt about is useful. It’s useful even if the allocation doesn’t affect budget authority for those activities. Knowledge about which past activities created technical debt, and how much, is helpful for long-term reduction in the rate of technical debt formation.

When we think of technical debt, we tend to think of activities that produce it relatively directly. We often imagine it as resulting solely from engineering activity, or from decisions not to undertake engineering activity. In either case the activity involved, whether undertaken or not, is activity directly involving the asset that carries—or which will be carrying—the technical debt. This kind of technical debt is endogenous technical debt. The word endogenous comes from the Greek endo– (within or inside) + –genous (related to producing). So endogenous technical debt is that portion of an asset’s debt that comes about from activities or decisions that directly involve the asset.

More about endogenous technical debt in future posts. For now, let’s look more closely at exogenous technical debt, and its policy implications.

Examples of exogenous technical debt

In “Spontaneous generation,” I examined one scenario in which technical debt formation occurs spontaneously—that is, in the absence of engineering activity. Specifically, I noted how the emergence of the HTML5 standard led to the formation of technical debt in some (if not all) existing Web sites. This happened because those sites didn’t exploit capabilities that had become available in HTML5. Moreover, some sites needed rehabilitation to remove emulations of the capabilities of the new standard. Those emulations needed to be replaced with use of facilities in the HTML5 standard. All of these artifacts—including those that existed, and those that didn’t—comprised technical debt. This scenario thus led to the formation of exogenous technical debt.

In a second example, AMUFC, A Made-Up Fictitious Corporation, incurs technical debt when the vendor that supplies the operating system (OS) for AMUFC’s desktop computers announces the date of the end of extended support for the version of the OS in use at AMUFC. Because the end of extended support brings an end to security updates, AMUFC must retire that debt by migrating to the next version of that vendor’s OS before extended support actually ends.

In both examples, the forces that lead to formation of exogenous technical debt are external to the enterprise and the enterprise’s assets. But what makes technical debt exogenous is that the forces that led to its formation are unrelated the engineering work being performed on the asset. This restriction is loose enough to also include technical debt that arises from any change or activity external to the asset, but within the enterprise.

Exogenous technical debt arising from actions within the enterprise

Exogenous technical debt can arise from activities or decisions that take place entirely within the enterprise.

For example, consider the line of mobile devices of AMUFC (A Made-Up Fictitious Corporation). Until this past year, AMUFC has been developing ever more capable devices. These efforts extended its line of offerings at the high end—the more expensive and capable members of the line. But this past quarter, AMUFC developed a low-end member of the line.

As often happens, price constraints for the low-cost device led to innovations. Those innovations could produce considerable savings in manufacturing costs if used all across the line. In effect, the designs of the previously developed higher-end models have incurred exogenous technical debt. The debt is exogenous because the activity that led to debt formation wasn’t performed on the assets that carry the debt. The debt is real, even though the activity that led to debt formation occurred within the enterprise. This kind of exogenous technical debt is asset-exogenous. Exogenous technical debt of the kind that results from activity beyond the enterprise is enterprise-exogenous.

Exogeneity versus endogeneity

For asset-exogenous technical debt, ambiguity between endogeneity and exogeneity can arise. The example above regarding the line of mobile devices produced by AMUFC provides an illustration.

For convenience, call the team that developed one of the high-end devices Team High. Call the team that developed the low-end device Team Low. From the perspective of Team High, the technical debt due to the innovations discovered by Team Low is exogenous. But from the perspective of the VP Mobile Devices, that same technical debt might be regarded as endogenous. The debt can be endogenous at VP level because it’s possible to regard the entire product line as a single asset, and that might actually be the preferred perspective of VP Mobile Devices.

This ambiguity can lead to some nasty toxic conflict. Team High and VP Mobile Devices might attack each other as they try to defend themselves proactively against claims that they are incurring technical debt. Avoiding this kind of conflict requires educating everyone as to the origins of technical debt.

Exogeneity and legacy technical debt

The technical debt portfolio of a given asset can contain a mix a technical debt that arose from various past incidents. In assessing the condition of the asset, it’s useful to distinguish this existing debt from debt that’s incurred as a consequence of any current activity or decisions. Call this pre-existing technical debt legacy technical debt.

The legacy technical debt an asset carries is technical debt associated with the asset, and which existed in any form before undertaking work on that asset. For example, consider planning a project to renovate the hallways and common areas of a high-rise apartment building. Suppose workers discover beneath the existing carpeting a layer of asbestos floor tile. Then Management might decide to remove the tile. In this context, we can regard the floor tile as legacy technical debt. It isn’t directly related to the objectives of the current renovation. But removing it will enhance the safety of future renovations. It will also enable certification of the building as asbestos-free, increase the property value, and reduce the cost of eventual demolition. In this situation asbestos removal is retirement of legacy technical debt. Accounting for it as part of the common-area renovation would be misleading.

Exogeneity is relevant when allocating resources for legacy technical debt retirement efforts. If the debt in question is enterprise-exogenous, we can justifiably budget the effort from enterprise-level accounts. For other cases, other resources become relevant, depending on what actions created the debt. For example, suppose that the technical debt arose from a change in enterprise standards. Then we can justifiably allocate retirement costs to the standard-setting initiative. If the exogenous technical debt arose from innovations in other members of the asset’s product line, we can can justifiably allocate those debt retirement costs to the product line.

Policy insights

Understanding the properties of exogenous technical debt can be a foundation for policy innovations that enhance enterprise agility.

Culture transformation

Widespread understanding of the distinction between exogenous and endogenous technical debt is helpful in controlling interpersonal conflict. For example, it can reduce blaming behavior that targets the engineering teams responsible for developing and maintaining technological assets.

Understanding asset-exogenous technical debt helps non-engineers understand how their actions and decisions can lead to technical debt formation. The concept clarifies the import of their actions even when there is no apparent direct connection between those actions or decisions and the assets in question.

Resource allocation

Data about the technical debt creation effects of enterprise activities is helpful in allocating technical debt retirement costs. For example, suppose that we know all the implications of reorganization, including its impact on internal data about the enterprise itself. Then we can charge data-related activity to the reorganization instead of to general accounts of the Information Technology function. This helps the enterprise understand the true costs of reorganization.

Similarly, data about enterprise-exogenous technical debt helps planners understand how to deploy resources to gather external intelligence about trends that can affect internal assets. Such data is also useful for setting levels of support and participation in industrial standards organizations or in lobbying government officials.

Last words

Knowing the formation history of exogenous technical debt provides useful guidance for those charged with allocating the costs of retiring technical debt or preventing its formation.

References

[Ellsberg 1961] Daniel Ellsberg. "Risk, ambiguity, and the Savage axioms." The quarterly journal of economics, 643-669, 1961.

Available: here; Retrieved: August 17, 2018.

Cited in:

[Kahneman 1984] Daniel Kahneman, Amos Tversky, and Michael S. Pallak. “Choices, values, and frames,” American Psychologist 39:4, 341-350, 1984.

Available: here; Retrieved: August 8, 2017

Cited in:

[Kerth 2001] Norman L. Kerth. Project Retrospectives: A Handbook for Team Reviews. New York: Dorset House, 2001.

Order from Amazon

Cited in:

[Tversky 1973] Amos Tversky and Daniel Kahneman. "Availability: A heuristic for judging frequency and probability." Cognitive Psychology 5:2, 207-232, 1973.

Available: here; Retrieved: August 9, 2018.

Cited in:

Other posts in this thread

Separating responsibility for maintenance and acquisition

Last updated on July 8th, 2021 at 01:28 pm

Separating responsibility for maintenance and acquisition or development of technical assets can lead to uncontrolled growth of technical debt. The problem arises when we measure without regard for technical debt the performance of the business acquisition function or the performance of the development organization. In that circumstance, technical debt is likely to expand unchecked. To limit such expansion, policymakers must devise performance measures that hold these organizations accountable for technical debt resulting from their actions.

Software systems

Road damage in Warwick, Rhode Island, resulting from historic storms in March 2010
Road damage in Warwick, Rhode Island, resulting from historic storms in March 2010 [NOAA 2013]. The storms were so severe that the floodwaters overtopped the gauge’s measurable range. Moreover, the National Weather Service (NWS) lacked a database of measurable ranges for flood gauges. Quoting the NWS report: “A lesson learned here was that maximum recordable river levels should be known by NWS staff, not only so staff aren’t surprised when this type of issue arises, but also to notify USGS personnel so that they can install a temporary gage and remove or elevate threatened equipment.” Technical debt, if ever I’ve seen it.
For systems consisting solely of software, separating responsibility for maintenance and acquisition or system development is risky. It enables the acquiring organization to act with little regard for the consequences of its decisions vis-à-vis maintenance matters [Boehm 2016]. This is unfortunate—it increases the rate of accumulation of new technical debt. And it increases the lifetime of legacy technical debt. This happens more frequently when the acquiring organization doesn’t suffer the MICs associated with the technical debt.

For example, a focus on performance of the organization that’s responsible for acquisition biases them in favor of attending to the direct and immediate costs of the acquisition. They are likely to have little or no regard for ongoing maintenance issues. The maintenance organization must then deal with whatever the acquired system contains (or lacks).

An analogous mechanism operates for organizations that develop, market, and maintain products or services. When there are software elements in their respective infrastructures, separation of the development function from the maintenance function enables the development function to act independently of the maintenance consequences of its decisions.

Systems that include hardware

But the separation-of-responsibilities mechanism that leads to uncontrolled technical debt isn’t restricted to software. Any technological asset that has ongoing maintenance needs (and most of them do) can potentially present this problem.

For example, in the United States, and many other countries, two streams of resources support publicly-owned infrastructure [Blair 2017]. The funding stream covers construction, operations and maintenance, and repairs. Its usual sources are taxes, tolls, licenses, other user fees, sale of ad space, and so on. The financing stream covers up-front construction costs, to bridge the period from conception through construction, until the funding stream begins delivering resources. The financing stream usually comes from bond sales.

Although legislatures, or agencies they establish, control both streams of resources, the effects of the streams differ fundamentally. The financing stream is dominant during construction and the early stages of the asset’s lifecycle. The funding stream is dominant after that—when maintenance and operations are most important. Legislators and agencies are generally reluctant to supply funding because of the impact on taxpayers and users. Legislators and agencies find financing much more palatable. For this reason, among others, funds for U.S. infrastructure maintenance are generally insufficient, and technical debt gradually accumulates.

So it is with technological assets in organizations. For accounting purposes, capital expenses are treated differently from operational expenses. The result is that operational expenses can have a more significant impact on current financial results than capital expenses do. This leads organizations to underfund operations and maintenance, which contributes to technical debt accumulation.

Last words

Control of new technical debt accumulation and enhancement of technical debt retirement rates is possible only if we can somehow hold accountable the acquisition or development organizations for the MICs that result from their actions. Securitization of the debt incurred, as I’ll address in a forthcoming post, is one possible means of imposing this accountability. But reserves are also required, because some of the debt incurred might not be known at the time the asset is acquired or created.

Separating responsibility for maintenance and acquisition or system development is actually a form of stovepiping. See “Stovepiping can lead to technical debt” for more on stovepiping.

References

[Blair 2017] Hunter Blair. “No free bridge: Why public–private partnerships or other ‘innovative’ financing of infrastructure will not save taxpayers money,” Economic Policy Institute blog, March 21, 2017.

Available: here; Retrieved: January 29, 2018

Cited in:

[Boehm 2016] Barry Boehm, Celia Chen, Kamonphop Srisopha, Reem Alfayez, and Lin Shiy. “Avoiding Non-Technical Sources of Software Maintenance Technical Debt,” USC Course notes, Fall 2016.

Available: here; Retrieved: July 25, 2017

Cited in:

[Ellsberg 1961] Daniel Ellsberg. "Risk, ambiguity, and the Savage axioms." The quarterly journal of economics, 643-669, 1961.

Available: here; Retrieved: August 17, 2018.

Cited in:

[Kahneman 1984] Daniel Kahneman, Amos Tversky, and Michael S. Pallak. “Choices, values, and frames,” American Psychologist 39:4, 341-350, 1984.

Available: here; Retrieved: August 8, 2017

Cited in:

[Kerth 2001] Norman L. Kerth. Project Retrospectives: A Handbook for Team Reviews. New York: Dorset House, 2001.

Order from Amazon

Cited in:

[NOAA 2013] NOAA/National Weather Service. “The March, 2010 Floods in Southern New England,” WFO Taunton Storm Series Report #2013-01, January 2013.

Available: here; Retrieved: January 30, 2018

Cited in:

[Tversky 1973] Amos Tversky and Daniel Kahneman. "Availability: A heuristic for judging frequency and probability." Cognitive Psychology 5:2, 207-232, 1973.

Available: here; Retrieved: August 9, 2018.

Cited in:

Other posts in this thread

Technical debt and engineering resources

Last updated on July 7th, 2021 at 10:34 am

Flooding from Hurricane Katrina in New Orleans, 2005.
Flooding from Hurricane Katrina in New Orleans, 2005. The forces of Nature can overtop or undermine any levee humans can build. So it is with technology. Organizational policy and politics can overcome or undermine any technology humans can devise to attain mastery over technical debt. To master technical debt, technology isn’t enough—we must also deal with policy and politics.

Improving organizational effectiveness in technical debt management—or avoiding incurring new technical debt—should create significant savings and competitive advantages. These benefits arise from reductions in metaphorical interest charges (MICs) that result from retiring technical debt. But these benefits become available only if engineering capacity increases relative to the total debt-related workload. After the technical debt management program is in place, if the balance between engineering resources and debt-related workload becomes more favorable, then organizational effectiveness can improve. But if the balance becomes less favorable, as a result of reductions in engineering resources, organizational effectiveness won’t improve, even at lower levels of technical debt.

Unfortunately, some organizations adopt advanced technical debt management practices while reducing engineering capacity. If reductions are dramatic enough, engineering effectiveness is no better than it was before initiating the technical debt management program. The reason for this is that the engineering process isn’t the sole cause of technical debt. Improving the engineering process to eliminate technical causes of technical debt leaves nontechnical causes in place. That’s why technological solutions to the technical debt management problem might not produce benefits in organizational effectiveness and agility.

The focus of technical debt research has been technology

The focus of research in technical debt management has been on technology—recognition of technical debt, its measurement, representation, retirement, and so on. Progress on improving the engineering process has been significant, especially in software engineering, where a clear “research roadmap” has appeared [Izurieta 2017]. Effective tools for automating or partially automating technical debt detection and retirement will be widely available and very generally effective in the not-too-distant future, at least for software. But progress has transcended debt detection and retirement. Avoiding technical debt formation to the extent possible is much preferable, and in some contexts, it’s practical even today, as Trumler and Paulisch suggest [Trumler 2016].

Such developments might or might not have much impact on the limiting the effects of carrying technical debt. Given the necessary resources, engineering organizations could retire much of the technical debt now extant. That is, the will and the capacity to invest in debt retirement determines debt retirement rates. Currently, the levels of will and capacity for such activity are insufficient. But if new methods for managing technical debt become available, one might wonder whether organizations will apply resources sufficient to ensure that they actually experience a reduction in the limiting effects of technical debt.

Technological development isn’t enough

The open question is this: will technological developments alone give us control of the problem of technical debt? Perhaps not. Advancements in technical debt management do benefit organizations. But they could use that benefit to execute reductions in engineering staffing. If they do, they could divert savings to other parts of the enterprise. That would allow technical debt to remain at reduced levels that could still compromise the effectiveness of that reduced engineering staff.

For example, research has shown that schedule pressure contributes to technical debt formation and persistence. Suppose that the engineering groups of an organization become more adept at managing and preventing technical debt. Suppose further that the organization’s marketing and sales groups don’t improve their own intelligence and planning processes. Then Marketing might demand new capabilities with ever shorter timelines. That could lead to increased schedule pressure for the engineering groups. Then the enterprise might not benefit from the new technical debt management capabilities, even though the burden of technical debt has been reduced.

Until we have evidence of significant change in the behavior of non-technologists—or even acknowledgment that their behavior contributes to debt formation—we can expect the effects of nontechnical causes of technical debt to persist, and possibly even to grow.

This blog focuses on the nontechnical etiology of technical debt formation and persistence, and approaches for managing it. Watch this space.

References

[Blair 2017] Hunter Blair. “No free bridge: Why public–private partnerships or other ‘innovative’ financing of infrastructure will not save taxpayers money,” Economic Policy Institute blog, March 21, 2017.

Available: here; Retrieved: January 29, 2018

Cited in:

[Boehm 2016] Barry Boehm, Celia Chen, Kamonphop Srisopha, Reem Alfayez, and Lin Shiy. “Avoiding Non-Technical Sources of Software Maintenance Technical Debt,” USC Course notes, Fall 2016.

Available: here; Retrieved: July 25, 2017

Cited in:

[Ellsberg 1961] Daniel Ellsberg. "Risk, ambiguity, and the Savage axioms." The quarterly journal of economics, 643-669, 1961.

Available: here; Retrieved: August 17, 2018.

Cited in:

[Izurieta 2017] Clemente Izurieta, Ipek Ozkaya, Carolyn Seaman, and Will Snipes. “Technical Debt: A Research Roadmap: Report on the Eighth Workshop on Managing Technical Debt (MTD 2016),” ACM SIGSOFT Software Engineering Notes, 42:1, 28-31, 2017. doi:10.1145/3041765.3041774

Cited in:

[Kahneman 1984] Daniel Kahneman, Amos Tversky, and Michael S. Pallak. “Choices, values, and frames,” American Psychologist 39:4, 341-350, 1984.

Available: here; Retrieved: August 8, 2017

Cited in:

[Kerth 2001] Norman L. Kerth. Project Retrospectives: A Handbook for Team Reviews. New York: Dorset House, 2001.

Order from Amazon

Cited in:

[NOAA 2013] NOAA/National Weather Service. “The March, 2010 Floods in Southern New England,” WFO Taunton Storm Series Report #2013-01, January 2013.

Available: here; Retrieved: January 30, 2018

Cited in:

[Trumler 2016] Wolfang Trumler and Frances Paulisch. “How ‘Specification by Example’ and Test-driven Development Help to Avoid Technical Debt,” IEEE 8th International Workshop on Managing Technical Debt. IEEE Computer Society, 1-8, 2016. doi:10.1109/MTD.2016.10

Cited in:

[Tversky 1973] Amos Tversky and Daniel Kahneman. "Availability: A heuristic for judging frequency and probability." Cognitive Psychology 5:2, 207-232, 1973.

Available: here; Retrieved: August 9, 2018.

Cited in:

Related posts