Retiring technical debt from irreplaceable assets

Last updated on July 14th, 2021 at 07:38 pm

A map of the U.S. Interstate Highway System, which many regard as one of our irreplaceable assets
A map of the U.S. Interstate Highway System. The map shows primary roadways, omitting most of the urban loop and spur roads that are actually part of the system. In 2016, the total length of highways in the system was about 50,000 miles (about 80,000 km). About 25% of all vehicle miles the U.S. occur in this system. The cost to build it was about USD 500 billion in 2016 currency. Significant advances have occurred since the 1950s in technologies such as rail, electronics, data management, and artificial intelligence. And the effects of fossil fuel combustion on global climate are well known. One wonders whether such a system would be the right choice if construction were to begin today. If alternatives would be better, then this system might be regarded as technical debt. But replacing it might not be practical. Finding a way to retire the technical debt without replacing the entire asset might be the most viable solution. Image by SPUI courtesy Wikipedia.

Designing a project to retire some portion of the technical debt from a critical, irreplaceable asset, can be a daunting task. It’s best to acknowledge that the project design problem is very likely a wicked problem in the sense of Rittel and Webber [Rittel 1973]. See my post “Retiring technical debt can be a wicked problem” for more. In this thread, of which this is the first post, I suggest some basic preparations for dealing with irreplaceable assets. They form a necessary foundation for success in approaching the debt retirement problem for irreplaceable assets.

Wicked problems

As I’ve noted in previous posts, the problems associated with retiring technical debt can be wicked problems. And if some of these problems aren’t strictly wicked problems, they can possess many of the attributes of wicked problems in degrees sufficient to challenge the best of us. That’s why approaching a technical debt retirement project as you would any other project is risky.

For convenience and to avoid confusion, in my last post I adopted the following terminology:

  • DRP is the Debt Retirement Project
  • DDRP is the effort to design the DRP
  • DBA is the set of Debt Bearing Assets undergoing modification in the context of the DRP
  • IA is the set of assets, excluding the DBA assets, that interact directly or indirectly with assets in the DBA

In the posts in this thread, convenience demands that we add at least one more shorthand term:

  • TDIQ is the Technical Debt In Question. That is, it’s the kind of technical debt we’re trying to retire from the DBA assets. Other instances of the TDIQ might also be found elsewhere, in other assets, but retiring those instances of the TDIQ is beyond the scope of the DRP.

Know when and why we must retire technical debt

For those technical debt retirement projects (DRPs) that exhibit a high degree of wickedness, a critical success factor is clear communication of the mission of the DRP. Clear communication is important because the DRP team must deal with many stakeholders who are in the early stages of familiarity with the concept of technical debt. Some of them might be cooperating reluctantly. Expressing the objectives and benefits of the DRP in a clear and inspiring way is very helpful. With that in mind, I offer the following reminder of the reasons for tackling such a large and risky project that produces so few results immediately visible to customers.

Examining alternatives to retiring the TDIQ is a good place to begin. One alternative is simply letting the TDIQ remain in place. Call this alternative “Do Nothing.” A second alternative to retiring the TDIQ is replacing the debt-bearing asset with something fresh and clean and debt-free. Call this alternative “Replace the Asset.” The problem many organizations face is that they cannot always rely on these alternatives. And because these two alternatives to debt retirement aren’t always practical, some organizations must develop the expertise and assets necessary to retire widespread technical debt in large, critical, irreplaceable systems. Below is a high-level discussion of these two alternatives to debt retirement.

Do Nothing

The first alternative is to find ways to accept that the DBA will continue to operate in their current condition, carrying the technical debt that they now bear. This alternative might be acceptable for some assets, including those that are relatively static and which need no further enhancement or extension. This category also includes those assets the organization can afford to live without.

One disadvantage of the “Do Nothing” approach is that technology moves rapidly. What seems acceptable today might not be acceptable in the very near future. It might become old-fashioned, behind the times, or non-compliant with future laws or regulations. Styles, fashions, technologies, laws, regulations, markets, and customer expectations all change rapidly. And even if the asset doesn’t change what it does, the organization might need to enhance the asset. The enhancements might become very expensive to accomplish due to the technical debt the asset carries.

An especially troubling scenario takes shape when the DBA contains portions that are severely out of date. When that happens the organization might no longer be able to find qualified candidates who can perform needed work on the DBA. This situation can also arise when portions of the DBA were developed in-house. In that case, there might not be any qualified candidates outside the organization. When everyone who understands the DBA has departed the organization, work can proceed only if the DBA is properly documented and a training and mentoring program is healthy and current.

For these reasons, Do Nothing can be a high-risk strategy.

Replace the Asset

The second alternative to retiring the TDIQ is to replace the entire asset. For this option, the question of affordability arises. In some instances this alternative is practical, but for many assets, the organization simply cannot afford to purchase or design and construct replacements.

Pay special attention to those assets that “learn.” They might contain data gathered from experience over a long period of time. Retiring the asset can require developing some means of recovering the experience data and migrating it to the replacement asset. That task is a potentially daunting effort in itself.

Replacement is especially problematic when the asset is proprietary. If the organization created the asset itself, they might have constructed it over an extended period of time. Replacement with commercial products could require extensive adaptation of those products, or adaptation of organizational processes. Worse yet, replacement with assets of its own making will likely be costly.

Last words

When organizations depend on assets that they must enhance or extend, and which they cannot afford to replace, they face a daunting problem. They must develop the expertise and resources needed to address the technical debt that such assets inevitably accumulate.

This series of posts explores the issues that arise when an organization undertakes to retire the technical debt that its irreplaceable assets are carrying. Below, I’ll be inserting links to the subsequent posts in this series.

Other posts in this thread

References

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.