Retiring technical debt from irreplaceable assets

Last updated on July 14th, 2021 at 07:38 pm

A map of the U.S. Interstate Highway System, which many regard as one of our irreplaceable assets
A map of the U.S. Interstate Highway System. The map shows primary roadways, omitting most of the urban loop and spur roads that are actually part of the system. In 2016, the total length of highways in the system was about 50,000 miles (about 80,000 km). About 25% of all vehicle miles the U.S. occur in this system. The cost to build it was about USD 500 billion in 2016 currency. Significant advances have occurred since the 1950s in technologies such as rail, electronics, data management, and artificial intelligence. And the effects of fossil fuel combustion on global climate are well known. One wonders whether such a system would be the right choice if construction were to begin today. If alternatives would be better, then this system might be regarded as technical debt. But replacing it might not be practical. Finding a way to retire the technical debt without replacing the entire asset might be the most viable solution. Image by SPUI courtesy Wikipedia.

Designing a project to retire some portion of the technical debt from a critical, irreplaceable asset, can be a daunting task. It’s best to acknowledge that the project design problem is very likely a wicked problem in the sense of Rittel and Webber [Rittel 1973]. See my post “Retiring technical debt can be a wicked problem” for more. In this thread, of which this is the first post, I suggest some basic preparations for dealing with irreplaceable assets. They form a necessary foundation for success in approaching the debt retirement problem for irreplaceable assets.

Wicked problems

As I’ve noted in previous posts, the problems associated with retiring technical debt can be wicked problems. And if some of these problems aren’t strictly wicked problems, they can possess many of the attributes of wicked problems in degrees sufficient to challenge the best of us. That’s why approaching a technical debt retirement project as you would any other project is risky.

For convenience and to avoid confusion, in my last post I adopted the following terminology:

  • DRP is the Debt Retirement Project
  • DDRP is the effort to design the DRP
  • DBA is the set of Debt Bearing Assets undergoing modification in the context of the DRP
  • IA is the set of assets, excluding the DBA assets, that interact directly or indirectly with assets in the DBA

In the posts in this thread, convenience demands that we add at least one more shorthand term:

  • TDIQ is the Technical Debt In Question. That is, it’s the kind of technical debt we’re trying to retire from the DBA assets. Other instances of the TDIQ might also be found elsewhere, in other assets, but retiring those instances of the TDIQ is beyond the scope of the DRP.

Know when and why we must retire technical debt

For those technical debt retirement projects (DRPs) that exhibit a high degree of wickedness, a critical success factor is clear communication of the mission of the DRP. Clear communication is important because the DRP team must deal with many stakeholders who are in the early stages of familiarity with the concept of technical debt. Some of them might be cooperating reluctantly. Expressing the objectives and benefits of the DRP in a clear and inspiring way is very helpful. With that in mind, I offer the following reminder of the reasons for tackling such a large and risky project that produces so few results immediately visible to customers.

Examining alternatives to retiring the TDIQ is a good place to begin. One alternative is simply letting the TDIQ remain in place. Call this alternative “Do Nothing.” A second alternative to retiring the TDIQ is replacing the debt-bearing asset with something fresh and clean and debt-free. Call this alternative “Replace the Asset.” The problem many organizations face is that they cannot always rely on these alternatives. And because these two alternatives to debt retirement aren’t always practical, some organizations must develop the expertise and assets necessary to retire widespread technical debt in large, critical, irreplaceable systems. Below is a high-level discussion of these two alternatives to debt retirement.

Do Nothing

The first alternative is to find ways to accept that the DBA will continue to operate in their current condition, carrying the technical debt that they now bear. This alternative might be acceptable for some assets, including those that are relatively static and which need no further enhancement or extension. This category also includes those assets the organization can afford to live without.

One disadvantage of the “Do Nothing” approach is that technology moves rapidly. What seems acceptable today might not be acceptable in the very near future. It might become old-fashioned, behind the times, or non-compliant with future laws or regulations. Styles, fashions, technologies, laws, regulations, markets, and customer expectations all change rapidly. And even if the asset doesn’t change what it does, the organization might need to enhance the asset. The enhancements might become very expensive to accomplish due to the technical debt the asset carries.

An especially troubling scenario takes shape when the DBA contains portions that are severely out of date. When that happens the organization might no longer be able to find qualified candidates who can perform needed work on the DBA. This situation can also arise when portions of the DBA were developed in-house. In that case, there might not be any qualified candidates outside the organization. When everyone who understands the DBA has departed the organization, work can proceed only if the DBA is properly documented and a training and mentoring program is healthy and current.

For these reasons, Do Nothing can be a high-risk strategy.

Replace the Asset

The second alternative to retiring the TDIQ is to replace the entire asset. For this option, the question of affordability arises. In some instances this alternative is practical, but for many assets, the organization simply cannot afford to purchase or design and construct replacements.

Pay special attention to those assets that “learn.” They might contain data gathered from experience over a long period of time. Retiring the asset can require developing some means of recovering the experience data and migrating it to the replacement asset. That task is a potentially daunting effort in itself.

Replacement is especially problematic when the asset is proprietary. If the organization created the asset itself, they might have constructed it over an extended period of time. Replacement with commercial products could require extensive adaptation of those products, or adaptation of organizational processes. Worse yet, replacement with assets of its own making will likely be costly.

Last words

When organizations depend on assets that they must enhance or extend, and which they cannot afford to replace, they face a daunting problem. They must develop the expertise and resources needed to address the technical debt that such assets inevitably accumulate.

This series of posts explores the issues that arise when an organization undertakes to retire the technical debt that its irreplaceable assets are carrying. Below, I’ll be inserting links to the subsequent posts in this series.

Other posts in this thread

References

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

Accounting for technical debt

Last updated on July 11th, 2021 at 04:57 pm

Accounting for technical debt isn’t the same as measuring it
Accounting for technical debt isn’t the same as measuring it. We usually regard our accounting system as a way of measuring and tracking enterprise financial attributes. We think of those financial attributes as representations of money. Technical debt is different. It isn’t real, and it isn’t a representation of money. It’s a representation of resources. Money is just one of those resources. Money is required to retire technical debt. We use money when we carry technical debt, and when we retire it. But we also use other kinds of resources when we do these things. Sometimes we forget this when we account for technical debt.

We need a high-caliber discussion of accounting for technical debt [Conroy 2012]. It’s a bit puzzling why there’s so little talk of it in the financial community. Perhaps one reason for this is the social gulf between the financial community and the technologist community. But another possibility is the set of pressures compelling technologists to leave technical debt in place and move on to other tasks.

Here’s an example. One common form of technical debt is the kind first described by Cunningham [Cunningham 1992]. Essentially, when we complete a project, we often find that we’ve advanced our understanding of what we actually needed to reach our goals. Because of our advanced understanding, we recognize that we should have taken a different approach. Fowler described this kind of technical debt as, “Now we know how we should have done it.” [Fowler 2009] At this point, typically, we disband the team and move on to other things, leaving the technical debt outstanding, and often, undocumented and soon to be forgotten.

Echo releases and management decision-making

A (potentially) lower-cost approach involves immediately retiring the debt and re-releasing the improved asset. I call this an “echo release.” An echo release is one in which the asset no longer carries the technical debt we just incurred and immediately retired. But echo releases usually offer no immediate, evident advantage to the people and assets that interact with the asset in question. That’s why decision makers have difficulty allocating resources to echo releases.

This problem arises, in part, from the effects of a what I regard as a shortcoming in management accounting systems. Most enterprise management accounting systems track effectively the immediate costs associated with technical debt retirement projects. They do a much less effective job of representing the effects of failing to execute echo releases, or failing to execute debt retirement projects in general. The probable cause of this deficiency is the distributed nature of the MICs—the metaphorical interest charges associated with carrying a particular technical debt. MICs appear in multiple forms: lower productivity, increased time-to-market, lost market share, elevated turnover of technologists, and more (see “MICs on technical debt can be difficult to measure”). Enterprise accounting systems don’t generally represent these phenomena very well.

The cost of not accounting for the cost of not retiring technical debt

Decision makers then adopt the same bias that afflicts the accounting system. In their deliberations regarding resource allocation, they emphasize only the cost of debt retirement. These discussions usually omit from consideration altogether any mention of the cost of not retiring the debt. That cost can be enormous, because it is a continuously recurring periodic charge with no end date. Those costs are the costs of not accounting for the cost of not retiring technical debt.

If we do make long-term or intermediate-term projections of MICs or costs related to echo releases, we do so to evaluate proposals for retiring the debt. Methods vary from proposal to proposal. Few organizations have standard methods for making these projections. And lacking a standard method, comparing the benefits of different debt retirement proposals is difficult. This ambiguity and variability further encourages decision makers to base decisions solely on current costs, omitting consideration of projected future benefits.

Dealing with accounting for technical debt

Relative to technical debt, the accounting practice perhaps most notable for its absence is accounting for outstanding technical debts as liabilities. We do recognize outstanding financial debt. But few balance sheets mention outstanding technical debt. Ignorance of the liabilities outstanding technical debt represents creates an impression that the enterprise has capacity that it doesn’t actually have. That’s why tracking our technical debts as liabilities would alleviate many of the problems associated with high levels of technical debt.

But other shortcomings in accounting practices can create additional problems almost as severe.

Addressing the technical-debt-related shortcomings of accounting systems requires adopting enterprise-standard patterns for debt retirement proposals. Such standards would make possible meaningful comparisons between different technical debt retirement options and between technical debt retirement options and development or maintenance options. One area merits focused and immediate attention: estimating MPrin and estimating MICs.

Standards for estimating MPrin are essential for estimating the cost of retiring technical debt. Likewise, standards for estimating MICs, at least in the short term, are essential for estimating the cost of not retiring technical debt. Because both MPrin and MICs can include contributions from almost any enterprise component, merely determining where to look for contributions to MPrin or MICs can be a complex task. So developing a checklist of potential contributions can help proposal writers develop a more complete and consistent picture of the MICs or MPrin associated with a technical debt. Below are three suggestions of broad areas worthy of close examination.

Revenue stream disruption

Technical debt can disrupt revenue streams either in the course of retirement projects, or when defects in production systems need attention. When those systems are out of production for repairs or testing, revenue capture might undergo short disruptions. Technical debt can extend those disruptions or increase their frequency.

For example, a technical debt consisting of the absence of an automated test can lengthen a disruption while the system undergoes manual tests. Technical debt consisting of misalignment between the testing and production environments can allow defects to slip through. Undetected defects can create new disruptions. Even a short disruption of a high-volume revenue stream can be expensive.

In advance of any debt retirement effort, we can identify some associations between classes of technical debt and certain revenue streams. This knowledge is helpful in estimating the contributions to MICs or MPrin from revenue stream disruption.

Extended time-to-market

Although technologists are keenly aware of productivity effects of technical debt, these effects can be small compared to the costs of extended time-to-market. In the presence of outstanding technical debt, time-to-market expands not only as a result of productivity reduction, but also from resource shortages and resource contention. Extended time-to-market can lead to delays in realizing revenue potential. And it can cause persistent and irreparable reductions in market share. To facilitate comparisons between different technical debt retirement proposals, estimates of these effects are invaluable.

Data flow disruption

All data flow disruptions aren’t created equal. Some data flow processes can detect their own disruptions and backfill as needed. For these flows, the main contribution to MICs or MPrin is delay. And the most expensive of these are delays in receiving or processing orders. Less significant but still important are delays in responding to anomalous conditions. Data flows that cannot detect disruptions are usually less critical. But they nevertheless have costs too. All of these consequences can be modeled and estimated. We can develop standard packages for doing so. And we can apply them repeatedly to MICs or MPrin estimates for different kinds of technical debt.

Last words

Estimates of MICs or MPrin are helpful in estimating the costs of retiring technical debt. They’re also helpful in estimating the costs of not retiring technical debt. In either case, they’re only estimates. They have error bars and confidence limits. The accounting systems we now use have no error bars. That, too, is a shortcoming that must be addressed.

References

[Conroy 2012] Patrick Conroy. “Technical Debt: Where Are the Shareholders' Interests?,” IEEE Software, 29, 2012, p. 88.

Available: here; Retrieved: August 15, 2018.

Cited in:

[Cunningham 1992] Ward Cunningham. “The WyCash Portfolio Management System.” Addendum to the Proceedings of OOPSLA 1992. ACM, 1992.

Cited in:

[Fowler 2009] Martin Fowler. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009.

Available here; Retrieved January 10, 2016.

Cited in:

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

Other posts in this thread

The Principal Principle: Focus on MICs

Last updated on July 7th, 2021 at 03:16 pm

The door to a bank vault
The door to a bank vault. One way to know that technical debt differs from financial debt is that banks aren’t involved in any way. Treating technical debt as if it had anything in common with financial debt—beyond our own sense of obligation—is a shortcut to real trouble. Remember the Principal Principle.

When some organizations first realize that technical debt is limiting their performance, they begin by chartering a “technical debt inventory.” They try to determine how much technical debt they’re carrying, where it is, and how much retiring it would cost. They really want to know how fast they can retire it. That’s understandable. It’s not too different from how one would approach an out-of-control financial debt situation. It might be understandable, but in most cases, inventorying all technical debt is ineffective. For technical debt we need a different approach, because technical debt is different from financial debt. With technical debt, we must be follow what I call the Principal Principle, which is:

The Metaphorical Principal (MPrin) of a technical debt, which is the cost of retiring it, isn’t what matters most. What usually matters most is the Metaphorical Interest Charges—the MICs.

Why MICs matter more

MICs on technical debt can vary dramatically. For assets that aren’t undergoing maintenance or enhancement, the MICs can be Zero for extended periods. And for retiring assets, any technical debt they carry can vanish when the asset passes out of service. For other assets, MICs can be dramatically higher—beyond the total cost of replacing the asset.

Most people regard the sole effect of MICs as reduction in engineering productivity. I take a different approach. I include in MICs anything associated with technical debt and which depresses net income. That would include lost or delayed revenue, increased expenses—anything. For example, suppose technical debt causes a two-month delay in reaching a market. IN that case, its effect on revenues can be substantial for years to come. I regard all of that total effect as contributing to MICs.

So the Principal Principle is that a focus on Principal can be your undoing. Focus on MICs instead. Drive them to Zero and keep them there.

Other posts in this thread

Technical debt use disorder

Last updated on July 11th, 2021 at 09:53 am

A ball and chain, with shackle
A ball and chain, with shackle. Attaching this device to the legs of prisoners or slaves limits their ability to run. Similarly, technical debt limits the organization’s ability to exploit new opportunities, or even to maintain their current market positions.

The American Psychiatric Association (APA) has identified a disorder called Substance Use Disorder (SUD). It includes alcoholism, drug addiction, and other patterns related to substance use [APA 2013]. Their research can serve as a model for understanding organizational behavior related to technical debt. In this post I show how to use that model to describe a disorder of organizations that we could call Technical Debt Use Disorder (TDUD). In the grip of TDUD, the organization can’t retire much of its technical debt. It can’t stop incurring new debt, even though almost everyone in the organization realizes that technical debt is harming the organization.

A brief description of APA’s publication, DSM-5®, might explain the connection between SUD and TDUD. DSM-5 is the fifth revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM). Health care professionals in the United States and much of the rest of the world use it as a guide to diagnosing mental disorders. It’s also a framework for further research. First published in 1952, the current revision, DSM-5, was released in 2013.

The connection to technical debt

So what does DSM-5 have to do with technical debt?

What distinguishes responsible use of technical debt from irresponsible use is a topic that has generated many papers, conference presentations, and hallway debates over the years. Although there is consensus about the distinction in many cases, the debate continues. Sometimes, though, research in one field suggests paths forward in seemingly unrelated fields. So much thought and study has been invested in DSM-5 that it’s worth a look to see if the technical debt community can harvest something useful from the research in psychiatry.

I looked at DSM because I noticed that organizations that carry significant volumes of technical debt seem to have difficulty retiring it. In some cases, they also have difficulty halting accumulation of technical debt, or even slowing the rate of accumulation. This struck me as similar to the substance use problems some people encounter. I began to wonder whether there might be parallels between the substance use disorders that afflict people—alcoholism, drug addiction, and so on—and the technical debt problems that afflict organizations.

In the table below is one set of parallels I’ve found. The left column of the table is the list of diagnostic criteria for Substance Use Disorder provided in the DSM. The right column is my rewording of those criteria in an attempt to make them apply to how organizations deal with technical debt. I had thought initially that the rewording exercise might be difficult—that it might be a stretch. And here and there, it was a bit of a stretch. But overall, the SUD framework is a very good fit.

Diagnosing technical debt use disorder

Have a look at the table, and then check out the comments below it about how health care professions use the criteria.

DSM-5 Criteria for Substance Use Disorder (SUD)Criteria for Enterprise Technical Debt Use Disorder (TDUD)
1. Taking the substance in larger amounts or for longer than you’re meant to.
1. Incurring technical debt in larger amounts than you intended and carrying it for longer than you intended.
2. Wanting to cut down or stop using the substance but not managing to.2. Wanting to retire your technical debt or reduce the rate of incurring it but not managing to.
3. Spending a lot of time getting, using, or recovering from use of the substance.3. Spending a lot of time dealing with the consequences of the technical debt you’ve already incurred.
4. Cravings and urges to use the substance.4. Insistent demands on precious resources, causing the enterprise to incur “just a little more” technical debt.
5. Not managing to do what you should at work, home, or school because of substance use.5. Not managing to attend to the needs of existing products, services, or technological infra­structure because of the demands resulting from metaphorical interest charges on technical debt.
6. Continuing to use, even when it causes problems in relationships.6. Continuing to carry technical debt, or continuing to incur yet more technical debt, even though it causes toxic conflict among employees, and problems in customer relationships and strategic partnerships.
7. Giving up important social, occupational, or recreational activities because of substance use.7. Giving up developing important new products or services, or upgrading critical infrastructure, or pursuing new initiatives because of resource deficits traceable to technical debt service.
8. Using substances again and again, even when it puts you in danger.8. Incurring technical debt again and again, even when it puts the enterprise in fiscal danger or danger of losing market position.
9. Continuing to use, even when you know you have a physical or psychological problem that could have been caused or made worse by the substance.9. Continuing to incur technical debt, even when you know you have a fiscal or market leadership problem that could have been caused or made worse by technical debt.
10. Needing more of the substance to get the effect you want (tolerance).10. Needing to incur more technical debt to get the fiscal effect you need—a product delivered or a contract completed.
11. Development of withdrawal symptoms, which can be relieved by taking more of the substance.11. Upon attempting to retire existing technical debt, or halting incurring yet more technical debt, fiscal or market position problems develop in short order, which can be relieved only by incurring yet more debt.

In health care, two or three symptoms indicate a mild substance use disorder; four or five symptoms indicate a moderate substance use disorder, and six or more symptoms indicate a severe substance use disorder. Have a look at the right-hand column. How would you score your organization? Can we categorize the severity of an organization’s problem with technical debt using a scale similar to the one health care professionals use for SUD?

Conclusion

Technical debt isn’t inherently evil. Its existence among technological assets isn’t proof of engineering malpractice. For example, we can decide responsibly to deliver a system that carries technical debt. But if we do, we must carefully weigh the consequences of incurring that debt against the consequences of delayed delivery. And we must have a workable plan for retiring that debt, or for carrying the burden of its MICs.

But organizations can nevertheless trap themselves in cycles of technical debt, unable to make much progress in reducing it. In some cases, business as usual won’t work. In some cases, only drastic action can break the cycle.

References

[APA 2013] American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Association Publishing, 2013.

The Order from Amazon

Cited in:

[Conroy 2012] Patrick Conroy. “Technical Debt: Where Are the Shareholders' Interests?,” IEEE Software, 29, 2012, p. 88.

Available: here; Retrieved: August 15, 2018.

Cited in:

[Cunningham 1992] Ward Cunningham. “The WyCash Portfolio Management System.” Addendum to the Proceedings of OOPSLA 1992. ACM, 1992.

Cited in:

[Fowler 2009] Martin Fowler. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009.

Available here; Retrieved January 10, 2016.

Cited in:

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

Other posts in this thread

Using SMART goals for technical debt reduction

Last updated on July 8th, 2021 at 01:06 pm

Attempting to reduce technical debt by setting so-called “SMART goals” in the obvious way can often disappoint. SMART, due to George T. Doran [Doran 1981], is widely used for expressing management goals. “SMART” is an acronym for “Specific, Measurable, Attainable, Realistic, and Time-boxed.” The last three words are available in various alternative ways. Doran himself used “assignable, realistic, and time-related.”

SMART is deeply embedded in management culture. Many assume without investigation that expressing technical debt goals using the SMART pattern will produce desired results. Also embedded in management culture is the aphorism, “You get what you measure.” [Ariely 2010]  [Bouwers 2010] A typical technical debt reduction goal: “Reduce technical debt by 20% per year for the next five years.”

SMART goals in their simplest form are ineffective for technical debt

Prof. George T. Doran (1939-2011), creator of the S.M.A.R.T acronym for setting management objectives
Prof. George T. Doran (1939-2011), creator of the S.M.A.R.T acronym for setting management objectives. Watch a 2010 interview of Prof. Doran at YouTube.
There’s ample support for a claim that applying the SMART technique in direct ways will be ineffective. Much employee behavior affects technical debt indirectly. It can overwhelm the effects of employee behaviors that affect technical debt indirectly. The direct approach does cause some employees to adopt desirable behaviors. But their impact isn’t significant enough compared to the effects of the behaviors that affect technical debt indirectly. Employees who see little connection between their own activities and the burden of technical debt can unwittingly have enormous impact. Moreover, many are subject to competing constraints on their behaviors that then cause them to act in ways that increase technical debt.

That’s why it’s necessary for management to develop a series of SMART goals that affect behaviors that have indirect effects on technical debt. In the first part of this post, “Setting a direct SMART goal for technical debt reduction is problematic,” I explore the problems inherent in the direct approach. In the second part, “How to set SMART goals for technical debt,” I provide examples of SMART goals that touch on behaviors that have indirect effects on technical debt.

Setting a direct SMART goal for technical debt reduction is problematic

Let’s begin by exploring some of the problems with the direct approach. In this section, I assume that management has set a SMART goal for the enterprise in the form, “Reduce technical debt by 20% for each of the next five years.” But there’s nothing special about the numbers. My comments below apply to the form of the goal, rather than the specific numbers.

The direct approach assumes measurability

To attain a goal of a 20% reduction in technical debt in a given year, we must be able to measure the level of technical debt. We measure it at the beginning of the year and at the end of the year. Presumably we do so with confidence in the 90% range or better. Such a measurement with the precision required might not be possible. Moreover, in most cases the probability that such a measurement is possible is low. For these reasons, setting periodic goals for total technical debt isn’t a useful management tool.

Consider a simple example. One common form of technical debt is missing or incompletely implemented capability. In some instances, the metaphorical principal (MPrin) of a given instance of this debt in the current year can change spontaneously to a dramatically larger value in the following year (or even the following week). This can happen due to changes in the underlying asset unrelated to the technical debt. Ot it can happen due to debt contagion. Or it can happen due to any number of other reasons. When this happens, the technical debt retirement effort for that year can appear to have suffered a serious setback. Setbacks like this can happen even though the technical debt retirement teams have been performing perfectly well.

The direct approach assumes a static principal

With most financial debts, a loan agreement sets the principal amount. Moreover, we can compute the principal at any time given the mathematical formulas specified in the loan agreement.

By contrast, in many cases, the metaphorical principal amount of a technical debt might be neither fixed nor readily computable. We can estimate the MPrin of a given kind of technical debt at a given time, and we can even make forward projections. But they are merely estimates, and their error bars can be enormous. See “Policy implications of the properties of MPrin” and “Useful projections of MPrin might not be attainable.”

The direct approach focuses on MPrin, not MICs

Objectives expressed in terms of the volume of technical debt—the total MPrin—are at risk of missing the point. Total MPrin isn’t what matters most. What matters is MICs—the total cost of carrying the debt. Even more important is the timing of arrival of the MICs. See “The Principal Principle: Focus on MICs.”

And like MPrin, MICs can vary in wild and unpredictable ways. For example, the MICs for a piece of technical debt borne by an asset that isn’t undergoing maintenance or enhancement can be zero; in a later time period, when that asset is undergoing enhancement, the MICs can be very high indeed. See “MICs on technical debt can be unpredictable” for a detailed discussion.

Priority setting for technical debt retirement is most effective when it accounts for the timing of MICs. For example, suppose we know that we must enhance a particular asset by FY21 Q3. And suppose we know that it bears technical debt that adds to the cost of the enhancement. Then retiring that debt in FY20 would be advisable. But if that technical debt has zero MICs for the foreseeable future, retiring it might not be worth the effort.

The direct approach fails to distinguish legacy technical debt from incremental technical debt

Unless policies are already in place governing the formation of incremental technical debt, technical debt retirement programs might encounter severe difficulty. New development and maintenance and enhancement of existing assets are ongoing. They generally produce technical debt in various forms. The technical debt retirement program might simply be unable to keep up with new debt formation.

The direct approach fails to anticipate the formation of enterprise-exogenous technical debt

Technical debt can sometimes form as a result of innovations, changes in standards, or changes in regulations that occur entirely external to the enterprise. I call such technical debt enterprise-exogenous. When this happens, the technical debt retirement effort can appear to have suffered a serious setback, even though the technical debt retirement teams might have been performing perfectly well. Before initiating a technical debt reduction program, it’s wise to first deploy a program that’s capable of retiring technical debt at a pace that at least equals the pace of formation of enterprise-exogenous technical debt.

Incurring technical debt is sometimes the responsible thing to do

At times, incurring technical debt is prudent. In these situations, accepting the debt you’ve incurred—even for the long term—might be appropriate. Strict goals about total technical debt can lead to reluctance to incur debt that has a legitimate business purpose. To prevent this, goals for total technical debt must be nuanced enough to deal with these situations. Goals for total technical debt that adhere strictly to the SMART goal pattern sometimes lack the necessary level of nuance.

How to set SMART goals for technical debt

SMART goals can work for technical debt management, but we must relate them to behavioral choices. Here are some examples of SMART goals that can be effective elements of a technical debt management program. Some of these examples are admittedly incomplete. For example, I offer no proof of assignability, attainability, or realism. Such attributes can vary from organization to organization. And we must allocate the goal in question across multiple organizational elements in ways peculiar to the organization.

At least 30% of incremental technical debt will be secured technical debt at the end of Year 1; 60% by the end of Year 2

Incremental technical debt is technical debt that’s incurred in the course of work currently underway or just recently completed. Because it’s so well understood, its MPrin can be estimated with higher precision than is usually possible with legacy technical debt. That precision is needed for defining the collateral and resources used to secure the debt.

A secured technical debt, like a secured financial debt, is one for which the enterprise reserves the resources needed to retire the debt. However, unlike a financial debt, the resources required to retire a technical debt might not be purely financial. Beyond financial resources, they might include particular staff, equipment, test beds, and downtime. The commitment might extend beyond the current fiscal period. Secured technical debt is a powerful means of driving down total technical debt burden, but it might require modification of internal budget management processes and fiscal reporting. Policymakers can help in designing and deploying the necessary changes.

Within one year, at least 50% of all incremental technical debt will be retired within one year of its origination; 70% within 18 months

This goal also exploits the fact that we can estimate incremental technical debt with relatively high precision. As a goal, it builds on the goal above by requiring that the organization actually expend as intended the resources pledged to retire incremental debts.

Within one year, all engineers and their direct supervisors will be educated in basic technical debt concepts

The educational materials will be developed in the next five months and piloted with 10% of the technical staff within seven months. The material will include an online proficiency test that 90% of engineers will have successfully passed within a year.

Within one year, 90% of project plans will include projections of the MPrin of the incremental technical debt they expect to generate for each delivery cycle

This information is useful for making forward projections of resources needed to secure incremental technical debt. Tracking the accuracy of these projections helps project planners improve their estimates.

Within one year, initiate a practice of identifying the top five forms of legacy technical debt, ranked by the volume of the contagion

Debt contagion is the propagation of a given form of technical debt by creating new system elements or assets in forms compatible with elements already identified as technical debt. By examining the body of incremental technical debt created enterprise-wide in a given time period (say, by fiscal quarter), we can determine the portion of that incremental debt that results from contagion, for each type of contagious legacy technical debt. This data is needed to identify the most contagious forms of legacy technical debt. They are prime candidates for debt retirement.

Within one year, initiate an industrial intelligence practice that is responsible for projecting the formation of enterprise-exogenous technical debt

This group must have a sophisticated grasp of the technologies in use within the enterprise that already bear enterprise-exogenous technical debt, or which could be subject to the formation of enterprise-exogenous technical debt. Its responsibilities cover enterprise products and services, as well as enterprise infrastructure. It issues advisories as needed, and an annual forecast. The group is also responsible for recommending and monitoring participation in industrial standards organizations. The group reports to the CIO or CTO.

References

[APA 2013] American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Association Publishing, 2013.

The Order from Amazon

Cited in:

[Ariely 2010] Dan Ariely. “You are what you measure,” Harvard Business Review 88:6, p. 38, 2010.

This article is probably the source of the adage “You are what you measure.” Personally, I believe it’s overstated. That is, it’s true in the large, perhaps, but not in detail. Moreover, there are some things that we are that can’t be measured. But it’s important to understand the content of this article because so many people take it as dogma. Available: here; Retrieved: June 4, 2018

Cited in:

[Bouwers 2010] Eric Bouwers, Joost Visser, and Arie van Deursen. “Getting What You Measure: Four common pitfalls in using software metrics for project management,” ACM Queue 10: 50-56, 2012.

Available: here; Retrieved: June 4, 2018

Cited in:

[Conroy 2012] Patrick Conroy. “Technical Debt: Where Are the Shareholders' Interests?,” IEEE Software, 29, 2012, p. 88.

Available: here; Retrieved: August 15, 2018.

Cited in:

[Cunningham 1992] Ward Cunningham. “The WyCash Portfolio Management System.” Addendum to the Proceedings of OOPSLA 1992. ACM, 1992.

Cited in:

[Doran 1981] George T. Doran. “There’s a S.M.A.R.T. Way to Write Management’s Goals and Objectives”, Management Review, 70:11, pp. 35-36, 1981.

Cited in:

[Fowler 2009] Martin Fowler. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009.

Available here; Retrieved January 10, 2016.

Cited in:

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

Other posts in this thread

MPrin for missing or incomplete capability

Last updated on July 7th, 2021 at 02:53 pm

In some instances, the metaphorical principal (MPrin) of a technical debt is a missing or incompletely implemented capability. For example, absence of a fully automated regression test suite can create difficulties for testing a complex system. Defects can slip through. That would result in reduced productivity and velocity. In this case, the projected cost of implementing, testing, and documenting the test suite, and training its users, would constitute the initial MPrin of the outstanding technical debt. This definition differs from some definitions, because it includes testing, documenting, and initial training. In general, from the enterprise perspective, when identifying the MPrin associated with missing or incompletely implemented capabilities, we must include all artifacts necessary to eliminate reductions in productivity and velocity.

But even if we include these items in the conventional definition, MPrin at retirement can exceed the savings at the time we incurred the debt. For example, in the interval between origination and retirement the assets involved can change. Moreover, if retiring the debt causes a revenue stream interruption, the MPrin, which includes the lost revenue, can be significantly larger than the initial MPrin.

Unique problems of incompletely implemented capability

A concrete building under construction
A concrete building under construction. Concrete takes about a month to cure and reach full strength. If we waited for full curing before pouring the floor above, multistory concrete construction would be slow and expensive. So we start on the next floor after only a few days. Because the floors can’t support themselves for about a week, we shore them using lower floors. The shoring constitutes a technical debt resulting from the “incomplete implementation” (partial cure) of each floor. We retire that debt by removing the shoring as we go. More about shoring and re-shoring
Technical debt associated with incompletely implemented capability presents unique problems. We can retire it in three distinct ways. First, we can complete the implementation. The MPrin associated with this approach can grow beyond the initial cost of completion, for the usual reasons. Second, we can cancel the capability. If we do, retiring the debt completely would require removal of all artifacts that we no longer need. Finally, we can choose a middle path. In the middle path we adopt some parts that have been completed. But we reject other parts, and we add whatever is necessary to create a limited version of what we originally planned.

Special challenges of non-physical assets

Invisibility is an important attribute of non-physical assets such as software, procedures, legislation, regulations, and so on. Technical debt associated with incomplete implementation is difficult to manage in such assets. For example, the image above shows several levels of a concrete building under construction. The vertical members between the levels are part of a shoring system that supports the levels of the building. Shoring is necessary until the concrete floors cure well enough to support themselves. Shoring constitutes a kind of technical debt that must be “retired” before the building is complete. The teams constructing the building could never forget to remove the shoring because it obstructs installation of the windows and walls.

But things are very different with non-physical assets. It’s easy to forget to remove intermediate artifacts, or elements that were part of attempts that didn’t work out. Many non-physical assets are perfectly functional carrying that kind of technical debt. That debt becomes evident with time, as the asset becomes increasingly difficult to maintain, extend, or defend.

It’s this property of non-physical assets that makes technical debt management so much more difficult than it is with physical assets. Not more important, just more difficult.

References

[APA 2013] American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Association Publishing, 2013.

The Order from Amazon

Cited in:

[Ariely 2010] Dan Ariely. “You are what you measure,” Harvard Business Review 88:6, p. 38, 2010.

This article is probably the source of the adage “You are what you measure.” Personally, I believe it’s overstated. That is, it’s true in the large, perhaps, but not in detail. Moreover, there are some things that we are that can’t be measured. But it’s important to understand the content of this article because so many people take it as dogma. Available: here; Retrieved: June 4, 2018

Cited in:

[Bouwers 2010] Eric Bouwers, Joost Visser, and Arie van Deursen. “Getting What You Measure: Four common pitfalls in using software metrics for project management,” ACM Queue 10: 50-56, 2012.

Available: here; Retrieved: June 4, 2018

Cited in:

[Conroy 2012] Patrick Conroy. “Technical Debt: Where Are the Shareholders' Interests?,” IEEE Software, 29, 2012, p. 88.

Available: here; Retrieved: August 15, 2018.

Cited in:

[Cunningham 1992] Ward Cunningham. “The WyCash Portfolio Management System.” Addendum to the Proceedings of OOPSLA 1992. ACM, 1992.

Cited in:

[Doran 1981] George T. Doran. “There’s a S.M.A.R.T. Way to Write Management’s Goals and Objectives”, Management Review, 70:11, pp. 35-36, 1981.

Cited in:

[Fowler 2009] Martin Fowler. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009.

Available here; Retrieved January 10, 2016.

Cited in:

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

Related posts

MPrin when standards or regulations change

Last updated on July 7th, 2021 at 11:15 am

The MPrin of technical debt that forms as a result of a change in standards or regulations is the cost of bringing affected assets into compliance. It matters not whether the standards in question are internal to your organization or external. The conventional definition of the MPrin for this kind of technical debt includes only the cost of aligning to the new standards or regs, the assets directly affected. But the conventional definition is incomplete. If we account for all work properly, the MPrin should also include ripple effects. Ripple effects are the changes in other assets that we must perform to maintain compatibility with the assets affected directly by the change in standards or regs.

The phrase standards or regs is beginning to bother even me. I’ll switch to standards when I mean standards or regulations (or regs) except when I say so explicitly.

Cost drivers of changes in standards

A view of the left side guard on a truck operated by the City of Cambridge, Massachusetts
A view of the left side guard on a truck operated by the City of Cambridge, Massachusetts. Side guards prevent vulnerable road users (pedestrians, bicyclists, and motorcyclists) from being swept under trucks and crushed (and often killed) by the truck’s rear wheels. Cambridge has a pilot program affecting city-operated trucks, but Boston is requiring all contractors to install side guards. This change in regulations creates a technical debt for all truck operators whose vehicles lack side guards. [Volpe 2017] City of Cambridge photo courtesy U.S. Department of Transportation.

Aligning existing assets to new standards can have expensive consequences. We must include all costs in the calculation of MPrin. Unfortunately, some costs are often overlooked or accounted for in other ways. For example, testing might require a service interruption or product availability delays or interruptions. And that could entail a revenue stream delay or interruption. That lost revenue is certainly a consequence of the debt retirement effort.

Deferring retirement of this class of technical debt can expose the enterprise to the risk of MPrin growth in two ways. First, when we defer debt retirement, the number of instances of violations of the new standards can increase as we develop new assets in compliance with the obsolete standards. Second is the potential for increases in the number of ripple effect instances when we defer debt retirement. These instances arise from increases in the number of artifacts that require updating. The issue isn’t that they aren’t compliant with the new standards. Rather, it is that we must align them with the components we modify to comply with the new standards. In this way, MPrin at debt retirement time can greatly exceed the savings we realized when we first incurred the debt.

Last words

However, as with most technical debts, deferring retirement of this class of debt can sometimes be wise. For example, if the assets that bear the debt are about to be retired, the debt they carry vanishes when we retire those assets.

References

[APA 2013] American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Association Publishing, 2013.

The Order from Amazon

Cited in:

[Ariely 2010] Dan Ariely. “You are what you measure,” Harvard Business Review 88:6, p. 38, 2010.

This article is probably the source of the adage “You are what you measure.” Personally, I believe it’s overstated. That is, it’s true in the large, perhaps, but not in detail. Moreover, there are some things that we are that can’t be measured. But it’s important to understand the content of this article because so many people take it as dogma. Available: here; Retrieved: June 4, 2018

Cited in:

[Bouwers 2010] Eric Bouwers, Joost Visser, and Arie van Deursen. “Getting What You Measure: Four common pitfalls in using software metrics for project management,” ACM Queue 10: 50-56, 2012.

Available: here; Retrieved: June 4, 2018

Cited in:

[Conroy 2012] Patrick Conroy. “Technical Debt: Where Are the Shareholders' Interests?,” IEEE Software, 29, 2012, p. 88.

Available: here; Retrieved: August 15, 2018.

Cited in:

[Cunningham 1992] Ward Cunningham. “The WyCash Portfolio Management System.” Addendum to the Proceedings of OOPSLA 1992. ACM, 1992.

Cited in:

[Doran 1981] George T. Doran. “There’s a S.M.A.R.T. Way to Write Management’s Goals and Objectives”, Management Review, 70:11, pp. 35-36, 1981.

Cited in:

[Fowler 2009] Martin Fowler. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009.

Available here; Retrieved January 10, 2016.

Cited in:

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

[Volpe 2017] Volpe National Transportation Systems Center. “Truck Side Guards Resource Page,” October 2017.

Available: here; Retrieved: November 22, 2017

Cited in:

Related posts

MPrin in a platform component upgrade

Last updated on July 12th, 2021 at 03:05 am

An aisle in the stacks of a library, where marking the books with RFID tags would be a platform component upgrade
An aisle in the stacks of a library. Some libraries are upgrading their book tagging systems from barcodes to RFID tags. This is essentially a platform component upgrade. When they do convert, every item in their collections becomes an instance of technical debt until it’s tagged with an RFID. A tagging technician can process about 1,000 items per day [Boss 2011]. It’s a big job.

The MPrin of technical debt that forms as a consequence of a platform component upgrade depends on how we incur the debt. If we incur the debt by installing the upgrade, and then perform only some of the work made necessary by the upgrade, then the MPrin is the total cost of performing the deferred work. If we incur the debt by deferring the upgrade, then the conventional definition of the MPrin has two components. The first is the cost of the upgrade, and the second is the cost of any work made necessary by the upgrade, but not performed.

Hold on—it’s not so simple

In this latter instance, MPrin can increase over time. Increases can occur if the following three-step sequence happens for either maintenance or enhancements. In step 1, we perform work in the environment of the obsolete platform component, but after deferring the upgrade. Step 2 is performance of the upgrade. In step 3, we must repeat the work we performed in step 1 because the step 1 version isn’t compatible with the upgrade. This situation can be even worse if we discover the need for step 3 as a result of operational failure after the upgrade. In that case, maintainers must investigate the failure first. And the failure might cause database contamination, which would also need remedying. These additional costs are actually part of the debt retirement effort for the debt incurred by deferring the upgrade, but we usually account for them—mistakenly—as routine operational expense.

Last words

Advance knowledge of what can go wrong is always a nice-to-have. Most of us try to acquire this knowledge before or as we plan our projects. And most of us can do better. Before you consider a plan complete, ask yourself if anyone else might have already tried something similar. If you can guess who that might be, contact him or her to find out how it went. No point repeating someone else’s mistakes.

References

[APA 2013] American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Association Publishing, 2013.

The Order from Amazon

Cited in:

[Ariely 2010] Dan Ariely. “You are what you measure,” Harvard Business Review 88:6, p. 38, 2010.

This article is probably the source of the adage “You are what you measure.” Personally, I believe it’s overstated. That is, it’s true in the large, perhaps, but not in detail. Moreover, there are some things that we are that can’t be measured. But it’s important to understand the content of this article because so many people take it as dogma. Available: here; Retrieved: June 4, 2018

Cited in:

[Boss 2011] Richard W. Boss, “RFID Technology for Libraries,” American Library Association, 2011.

Some libraries are upgrading their book tagging systems from barcodes to RFID tags—what is essentially a platform upgrade. When they do convert, every item in their collections becomes an instance of technical debt until it’s tagged with an RFID. A tagging technician can process about 1,000 items per day. It’s a big job. Available: here; Retrieved: November 21, 2017

Cited in:

[Bouwers 2010] Eric Bouwers, Joost Visser, and Arie van Deursen. “Getting What You Measure: Four common pitfalls in using software metrics for project management,” ACM Queue 10: 50-56, 2012.

Available: here; Retrieved: June 4, 2018

Cited in:

[Conroy 2012] Patrick Conroy. “Technical Debt: Where Are the Shareholders' Interests?,” IEEE Software, 29, 2012, p. 88.

Available: here; Retrieved: August 15, 2018.

Cited in:

[Cunningham 1992] Ward Cunningham. “The WyCash Portfolio Management System.” Addendum to the Proceedings of OOPSLA 1992. ACM, 1992.

Cited in:

[Doran 1981] George T. Doran. “There’s a S.M.A.R.T. Way to Write Management’s Goals and Objectives”, Management Review, 70:11, pp. 35-36, 1981.

Cited in:

[Fowler 2009] Martin Fowler. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009.

Available here; Retrieved January 10, 2016.

Cited in:

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

[Volpe 2017] Volpe National Transportation Systems Center. “Truck Side Guards Resource Page,” October 2017.

Available: here; Retrieved: November 22, 2017

Cited in:

Related posts

MPrin in a development project

Last updated on July 7th, 2021 at 11:12 am

The "basket bridge" of the Los Angeles Metro system
The “basket bridge” of the Los Angeles Metro system. Constructed by the Metro Gold Line Foothill Extension Construction Authority, and opened in 2012, it carries the Los Angeles to Pasadena Metro Gold Line light rail across the eastbound lanes of the I-210 Freeway. The rail line provides transport service to a ridership that had been driving or using bus service. Although the bus and rail aren’t exact duplicates of each other, there is enough overlap that bus ridership dropped significantly after the rail line opened. That drop created a technical debt in the bus system. Retiring that debt requires reducing, rescheduling and re-routing bus service [Broverman 2017].

We usually regard the MPrin of new technical debt associated with a development project as the difference between the cost of implementing it sustainably and the cost of simply making it work. The effort saved by choosing the latter over the former is the initial MPrin of the technical debt.

For example, consider an enhancement project for an existing asset. After we achieve an operational capability, we might notice that we’ve duplicated some of the asset’s pre-existing functionality. The responsible debt-free approach has three stages. First, we eliminate the new and unnecessary duplicated capability. Next, we modify the asset to use the previously existing capability. Finally, we re-test the asset. The approach that generates new debt involves leaving the duplication in place.

Other generators of technical debt

In a closely related example, we might recognize that the duplicated functionality in the newly developed portion of the asset is superior to the pre-existing form elsewhere in the asset. We’d like to remove the pre-existing form and replace instances of that form with instances of the newly developed functionality. But that work is clearly outside the scope of the new development, and it must await budgetary authority before it can be undertaken. Consequently, it becomes technical debt for the larger asset.

As time passes, and the enterprise undertakes other development projects, the implementations of previous projects can accumulate additional technical debt. The more obvious mechanisms by which this occurs include defect discovery, customer requests for enhancements, the need to enhance cyberdefenses in response to new threats, or changes in law or regulation. Less obvious, but no less significant, are changes in markets, customer needs, and underlying technologies. All can contribute to technical debt formation

A final example

An example of a less obvious process might be insights gained in marketing one product (call it P1). Suppose those insights reveal an opportunity to introduce other related products—P2, P3, and P4—to form a suite. The latter products could employ some assets developed for P1, if the latter products had been constructed slightly differently. The changes required in P1 therefore constitute technical debt, because we would have been able to develop P2, P3, and P4 much more rapidly if we had recognized the opportunity earlier. The P1 changes then become technical debt. And if we pursue P2, P3, or P4 without first retiring that debt, the debt probably expands, because the subsequent products manifest it.

New product (or service) developments often generate these situations.

References

[APA 2013] American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Association Publishing, 2013.

The Order from Amazon

Cited in:

[Ariely 2010] Dan Ariely. “You are what you measure,” Harvard Business Review 88:6, p. 38, 2010.

This article is probably the source of the adage “You are what you measure.” Personally, I believe it’s overstated. That is, it’s true in the large, perhaps, but not in detail. Moreover, there are some things that we are that can’t be measured. But it’s important to understand the content of this article because so many people take it as dogma. Available: here; Retrieved: June 4, 2018

Cited in:

[Boss 2011] Richard W. Boss, “RFID Technology for Libraries,” American Library Association, 2011.

Some libraries are upgrading their book tagging systems from barcodes to RFID tags—what is essentially a platform upgrade. When they do convert, every item in their collections becomes an instance of technical debt until it’s tagged with an RFID. A tagging technician can process about 1,000 items per day. It’s a big job. Available: here; Retrieved: November 21, 2017

Cited in:

[Bouwers 2010] Eric Bouwers, Joost Visser, and Arie van Deursen. “Getting What You Measure: Four common pitfalls in using software metrics for project management,” ACM Queue 10: 50-56, 2012.

Available: here; Retrieved: June 4, 2018

Cited in:

[Broverman 2017] Neal Broverman. “The Success of the Gold and Expo Lines Has Taken a Toll on Bus Ridership,” Los Angeles Magazine, March 30, 2017.

Available: here; Retrieved: November 21, 2017

Cited in:

[Conroy 2012] Patrick Conroy. “Technical Debt: Where Are the Shareholders' Interests?,” IEEE Software, 29, 2012, p. 88.

Available: here; Retrieved: August 15, 2018.

Cited in:

[Cunningham 1992] Ward Cunningham. “The WyCash Portfolio Management System.” Addendum to the Proceedings of OOPSLA 1992. ACM, 1992.

Cited in:

[Doran 1981] George T. Doran. “There’s a S.M.A.R.T. Way to Write Management’s Goals and Objectives”, Management Review, 70:11, pp. 35-36, 1981.

Cited in:

[Fowler 2009] Martin Fowler. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009.

Available here; Retrieved January 10, 2016.

Cited in:

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

[Volpe 2017] Volpe National Transportation Systems Center. “Truck Side Guards Resource Page,” October 2017.

Available: here; Retrieved: November 22, 2017

Cited in:

Related posts

Examples of MPrin in four scenarios

Last updated on June 15th, 2021 at 01:57 pm

Some examples might help to clarify the differences between the principal of financial debts and the MPrin of a technical debt. The examples to come in the next four posts illustrate the unique properties of MPrins of technical debts.

Technical debt can arise as a result of:
  • Changes internally within the enterprise
  • External environmental changes that directly affect existing assets
  • Changes in the competitive environment
  • Insights and changes in perception that lead to changes in objectives
  • Existing technical debt
  • Deferring decisions about almost anything

By contrast, we incur financial debt only as a result of decisions to incur financial debt.

The examples below illustrate some of these phenomena. For each one, the full post contains a more complete explanation.

Development projects

This example illustrates how technical debt can develop as a result of unanticipated insight regarding a marketing opportunity for a new product line. It shows how technical debt can arise independent of any decision made within the enterprise, and without any changes to assets of any kind. More: “MPrin in a development project

Platform component upgrades

We’ve already provided an example of technical debt arising from a platform upgrade. In this example, we show how deferring a platform upgrade creates new complications not present in the previous example, by illustrating how total MPrin can increase after the debt first forms. More: “MPrin in a platform component upgrade

Standards or regulatory changes

Changes in standards or regulations, whether internal, industry-wide, or governmental, can create technical debt. In some cases, the enterprise might not even be aware of the new debt. More: “MPrin when standards or regulations change

Missing or incompletely implemented capability

When a capability is incompletely implemented, it’s clear that the part left undone constitutes technical debt. What is less clear is what happens when the capability implementation is halted or rescinded. Trying to avoid new technical debt can actually be the cause of new technical debt, albeit of a different kind. More: “MPrin for missing or incomplete capability

Whether or not any similar scenarios have happened in your organization, these discussions are helpful for gaining insight into what kinds of technical debt policies can assist your organization in managing its technical debt. Let me know if you have experience with situations in which problems can be traced, even if only in part, to treating technical debt as if it were financial debt.

Show Buttons
Hide Buttons