Crowdsourcing debt identification

Last updated on July 10th, 2021 at 03:29 pm

I’ve often expressed the view that the people of the organization know where much of their technical debt is. Or they can find it quickly. To exploit this resource, what’s needed is a systematic method for gathering what they know. If we do, we can produce a database that can serve as a starting point for further investigation. We might call this part of the debt identification process “crowdsourcing debt identification.”

Crowdsourcing debt identification is gathering what employees know
A crowd. Crowds are powerful when they coordinate their actions.

When an organization first undertakes to manage its technical debt, one of the many initial tasks is identifying its existing technical debt. There are tools for executing some of this task, at least for software assets, and they are useful. But because they’re in an early stage of development, and because many non-software assets also carry technical debt, human assistance is required. And that’s the place where crowdsourcing can help.

An example of crowdsourcing debt identification

For example, if you ask engineers for examples of technical debt in the assets they work on regularly, they can rattle off a few examples without hesitation. But a few days later, while working on whatever task has focus that day, they’ll realize that they could have mentioned another painful item. And they’ll want to report it. Gathering that kind of information is very helpful to the debt identification effort. That’s crowdsourcing in action.

But investment is required for crowdsourcing to be effective. We must educate the people who will be doing the reporting, and we must give them tools to make reporting quick and easy.

Reporting issues

Crowdsourcing debt identification will produce a stream of “incident reports” by Debt Reporters (DRs). People we might call Debt Report Administrators (DRAs) could then interpret the reports. Then they could recast the reports for later investigation by experts in the assets involved. Common difficulties that add to workload of DRAs include the items below.

Inconsistent definitions of technical debt

Lack of uniformity in understanding what technical debt is and isn’t can cause DRs to report as potential debt items some artifacts that aren’t manifestations of technical debt. Worse, they might fail to report items that are technical debt.

Only educating the DRs about the organizational definition of technical debt can enhance consistency.

Repeated reporting of previously reported debt items

Unaware that a previous report has identified a debt item, DRs might file reports unnecessarily. Some of these duplications are obvious. But if the language of the report is different enough, identifying duplicates can take time.

< p class="left-indent">We can reduce duplication by making available descriptions of previously reported items in multiple forms.

Inconsistent descriptions of debt items

DRA must be able to recognize when two different DRs use different language to describe the same debt item. If they do not, then the debt report database will contain an unrecognized duplication.

The asset expert must then address this situation.

Failure to report known debt items

Some people, pressed by the urgency of their “own work,” might not report debt items they know about, or might hurriedly file low-quality reports. A high incidence of this behavior is an indicator of a deeper organizational issue: namely, that some people do not regard technical debt management as a worthy activity.

Tracking report quality and report frequency is one way to determine how much regard the people of the organization have for the debt management effort.

Report format and content

Reporting a potential technical debt item must not be burdensome. It must be easy. A Web-based form is a minimum. Users must be able to prefill some fields common to all their reports, and save the result as a template. Fields they might want to prefill include their personal identity and the asset identity. DRs might need several templates, depending upon the number of assets with which they interact. Switching from one template to another must also be easy.

Several authors have proposed report templates, Below is one due to Foganholi, et al. [Foganholi 2015]. (TD is technical debt)

IDTD identification number
DateDate of TD identification
ResponsiblePerson or role who should fix this TD item
TypeDesign, documentation, defect, testing, or other type of debt
ProjectName of project or software application
LocationList of files/classes/methods or documents/pages involved
DescriptionDescribes the anomaly and possible impacts on future maintenance
Estimated principalHow much work is required to pay off this TD item on a three-point scale: High/Medium/Low
Estimated interest amountHow much extra work will need to be performed in the future if this TD item is not paid off now on a three-point scale: High/Medium/Low
Estimated interest probabilityHow likely is it that this item, if not paid off, will cause extra work to be necessary in the future on a three-point scale: High/Medium/Low
IntentionalYes/No/Don’t Know
Fixed byPerson or role who really fix this TD item
Fixed dateDate of TD conclusion
Realized principalHow much work was required to pay off this TD item on a three-point scale: High/Medium/Low
Realized interest amountHow much extra work was needed to be performed if this TD item was not paid off at moment of detection, on a three-point scale: High/Medium/Low

While this template might be useful for tracking the technical debt item, it contains fields that aren’t needed for crowdsourcing debt identification. A simplified template for crowdsourcing debt identification might look like this:

Identifying Report TitleYour identifier for this report
DateDate of report (prefilled)
TypeDrop down menu of debt types, including “other”
ProjectName of the project sponsoring the work which led to your observation of the debt item
Location of debt itemList of assets involved, including specific location within complex assets
DescriptionDescribe the debt item including
  • Whether your current effort has created it and if so, how

  • Possible impact on present or future maintenance or enhancement efforts

  • Whether it has led to, or is a result of, contagion

  • How it’s affecting your work
IntentionalYes/No/Don’t Know

Asset experts then receive these reports and take one or more of the following actions:

  • Seek further information from the DR.
  • Reject the report as not involving technical debt. Rejection data is part of the basis for assessing the effectiveness of the education program.
  • Attach the report to a new or existing debt item, incorporating relevant information from the report into the debt item’s data.

The asset experts produce contains information like that suggested by Foganholi, et al.. It can be the basis of further analysis and eventual retirement of the debt item.

Last words

Investment in ease-of-use for the reporting process is essential for at least three reasons:
  • Some might regard reporting as an additional burden beyond the current workload.
  • In many organizations, some might regard reporting as a secondary responsibility.
  • Unless technical debt retirements rapidly become common occurrences, some might regard reporting as a waste of effort. The reporting itself must therefore be easy.

These phenomena all exert negative pressure on report quality. They tend to suppress report frequency. Ease-of-use can mitigate these effects.

References

[Foganholi 2015] Lucas Borante Foganholi, Rogério Eduardo Garcia, Danilo Medeiros Eler, Ronaldo Celso Messias Correia, and Celso Olivete Junior. “Supporting technical debt cataloging with TD-Tracker tool,” Advances in Software Engineering 2015, 4.

Available: here; Retrieved: July 7, 2018

Cited in:

Other posts in this thread

Related posts

Undercounting nonexistent debt items

Last updated on July 10th, 2021 at 08:55 am

Sherlock Holmes and Doctor Watson, in an illustration by Sidney Paget
Sherlock Holmes and Doctor Watson, in an illustration by Sidney Paget, with the caption, “Holmes gave me a sketch of the events.” In 1892 The Strand magazine published this illustration to accompany a story called “The Adventure of Silver Blaze” by Sir Arthur Conan Doyle. It’s in this story that the following dialog occurs:

Gregory (Scotland Yard detective): “Is there any other point to which you would wish to draw my attention?”

Holmes: “To the curious incident of the dog in the night-time.”

Gregory: “The dog did nothing in the night-time.”

Holmes: “That was the curious incident.”

From this, Holmes deduces that the dog’s master was the villain. This is an example of looking for what isn’t there, and failing to notice it. It’s an example of absence blindness.

Original book illustration, courtesy Wikimedia Commons.

People and companies are developing technologies for assessing the nature and volume of technical debt borne by enterprise assets. The key word is developing. Some tools do exist, and they can be helpful. But they can’t do it all. Most assessments also rely on surveys and interviews of engineers and their managers. But these tools have limitations, too. Among these limitations is undercounting nonexistent debt items in surveys about technical debt.

It’s well known that survey results can exhibit biases. Collectively, these biases are known as response biases [Furnham 1986]. Sources of response bias include phrasing of questions, the demeanor of the interviewer, the desires of the participants to be good experimental subjects, attempts by subjects to respond with the “right answers,” selection of subjects, and more. These sources of bias are real, and we must address them when we design surveys.

Selection bias and absence blindness

But I have in mind here a set of biases more specific to technical debt. For example, when we ask subjects for examples of technical debt, they’re more likely to recall and provide examples of artifacts that exist than they are to provide examples of artifacts that don’t exist. This happens because of a cognitive bias called selection bias. The effect isn’t intentional, and it can dramatically skew results.

Selection bias is an example of a cognitive bias. In this case, selection bias acts to skew the data in such a way as to interfere with proper randomization, which ensures that the sample data doesn’t accurately represent the actual population of technical debt artifacts. Specifically, the data will tend to under-represent technical debt artifacts that don’t exist. Related phenomena are absence blindness and survivorship bias.

For example, regression testing is an essential step used in refactoring systems. When regression tests are unavailable, and we try to refactor a system to retire some of its technical debt, we face a problem. We can’t be certain that we haven’t changed something important. And so, when a survey design doesn’t mitigate the effects of selection bias, we can expect an elevated probability of failing to note any missing regression tests.

Mitigating the risk of undercounting nonexistent debt items

It’s helpful for surveys to include questions that specifically ask subjects to report technical debt items that don’t exist, but which would be helpful if they did exist—like missing regression tests. Even more helpful: conduct brainstorming sessions for engineers in which the goal is to list missing artifacts, tools, or processes that comprise technical debt precisely because they’re missing.

References

[Foganholi 2015] Lucas Borante Foganholi, Rogério Eduardo Garcia, Danilo Medeiros Eler, Ronaldo Celso Messias Correia, and Celso Olivete Junior. “Supporting technical debt cataloging with TD-Tracker tool,” Advances in Software Engineering 2015, 4.

Available: here; Retrieved: July 7, 2018

Cited in:

[Furnham 1986] Adrian Furnham. “Response bias, social desirability and dissimulation,” Personality and Individual Differences 7:3, 385-400, 1986.

Cited in:

Leverage points for technical debt management

Last updated on July 10th, 2021 at 07:17 am

McMurdo Station, Antarctica, as seen from nearby Observation Hill
McMurdo Station, Antarctica, as seen from nearby Observation Hill. The United States Antarctic Program, a unit of the National Science Foundation, operates the station. It can house as many as 1258 people in Summer. Photo (cc) Gaelen Marsden courtesy McMurdo Station in Antarctica.

Adopting a technical debt management programs entails significant organizational change. The problem can seem so daunting that we don’t know where to begin. The places to begin are the places where the change agents have greatest leverage—what systems analysts call leverage points. Consider this scenario:

You’re sitting in the kickoff meeting of the new Technical Debt Management Task Force. The CEO is talking about how she realized that the company had a technical debt problem. It was when the Marigold project went through delay after delay, and was finally declared done, with multiple objectives waived. She’s saying something about, “we were trying to do backflips with millstones around our necks. So I want this task force to show us how to get rid of the millstones, and then get rid of them.”

OK, you think. But how? We’re a global enterprise with thousands of engineers and operations on every continent. Except maybe Antarctica. No wait, we’re there, too. McMurdo I think. We have software we don’t even know much about, acquired long ago along with the companies that built it. And we’re building new systems or modifying old ones all the time, trying to move everything to the cloud while enhancing data security. Where do we begin to look for the millstones of technical debt?

Have you been in that meeting? If not, can you imagine being in that meeting? Meetings like that are happening around the globe. We’re all in the same soup.

Leverage points: how to get rid of the millstones

It turns out that the answers to the millstone questions are available, but the pioneers and deep thinkers who have shown the way aren’t working on technical debt. Their field is called systems analysis. They work on problems like the collapse of the North Atlantic fishery, urban deterioration, unemployment, poverty, climate change, and the causes of the Great Recession of 2008—really difficult problems. Although the technical debt problem isn’t quite that challenging, it’s challenging enough to justify taking a look at the methods of systems analysis.

And when we do that, we immediately encounter a concept many call leverage points.

What are leverage points?

Leverage points are places in complex systems where a small change in one thing can produce big changes in system behavior. In a brilliant 1997 article, Donella Meadows describes what she calls “places to intervene in a system.” [Meadows 1997] She followed this article, making improvements each time, in 1999 [Meadows 1999] and 2008 [Meadows 2008]. Let me summarize Meadows’ work here.

To alter the behavior of a complex system, intervene at one or more of 12 categories of leverage points. For example, one category is called “Rules.” It consists of the incentives, punishments, and constraints that govern the behavior of the people and institutions that comprise the system. By adjusting the system’s rules, we can alter overall system behavior.

One more thing: the leverage points form an ordered hierarchy, ordered by effectiveness. Acting at a higher-level leverage point is more effective than acting at a lower-level leverage point. And more difficult, too. The ordering of the categories is a bit fuzzy, because every situation has its own quirks, but generally, the order is as given in the list below.

The twelve leverage points

In a moment I’ll give an example of using leverage point #9, Delays, to bring about change in the way the enterprise deals with technical debt. But first, here’s a brief summary of the leverage points in increasing order of leverage; not enough to truly understand what they are, but probably enough to pique your interest. As I write posts that illustrate interventions at these leverage points, I’ll link to them from here.

  1. Numbers: Constants and parameters such as subsidies, taxes, and standards
  2. Buffers: The sizes of stabilizing stocks relative to their flows
  3. Stock-and-Flow Structures: Physical systems and their nodes of intersection
  4. Delays in feedback loops
  5. Balancing Feedback Loops: The strength of the feedbacks relative to the impacts they are trying to correct
  6. Reinforcing Feedback Loops: The strength of the gain of driving loops
  7. Information Flows:  The structure of who does and does not have access to information
  8. Rules: Incentives, punishments, and constraints
  9. Self-Organization: The power to add, change, or evolve system structure
  10. Goals: The purpose or function of the system
  11. Paradigms: The mind-set out of which the system—its goals, structure, rules, delays, parameters—arises
  12. Transcending Paradigms

Delays in feedback loops

When we use feedback to control systems, and there are delays in the feedback, we can potentially create destructive system behavior. And that can happen when we try to control technical debt.

Whenever we try to control a quantity in an enterprise process, we must (a) set a target value for that quantity; then (b) measure its current value; and then (c) take action as appropriate to move the current value toward the target value. Systems analysts (and control theorists) call that arrangement a feedback loop. The action taken to move the current value to the target value is sometimes called the control signal. Under certain conditions, the feedback works as expected.

For example, to control the profitability of the enterprise, we can examine its net income, say, quarterly. And at the end of each quarter we can make adjustments if net income isn’t in the target range.

Feedback loops generally work pretty well, but under some conditions, oscillations can develop. One of those troublesome situations occurs when there’s a delay in the loop that’s of the same order as (or longer than) the time the system takes to respond to adjustments. Meadows uses the example of adjusting the water temperature of a shower when there’s a long delay between making the adjustment and feeling its effects. Overcorrection is almost inevitable, and that’s what causes system oscillation.

How controlling technical debt can create feedback loops

So let’s suppose that we’re trying to control the rate of accumulation of technical debt. One approach is to set a target for TDnew, the new technical debt generated in a project. To be fair to all projects, we decide to normalize this quantity according to the project budget B. So we set targets for each project’s N = TDnew/B, and we require that projects estimate N, on an ongoing basis, with a goal of having N in some target range when the project is complete.

Identifying technical debt isn’t straightforward

One problem with this approach is that we rarely identify accurately all the technical debt we’ve incurred until some time has passed after project delivery. With time, as the newly produced assets go into production and learning accumulates, we acquire the wisdom needed to identify more of the technical debt we created. This is one source of delay in this feedback loop.

So let’s assume that this happens for several projects, and management decides that delayed recognition of incurred technical debt is a common occurrence. To account for this, management lowers the target ranges for N for future projects. This causes project managers and project sponsors to include in their project plans additional effort directed at retiring more of their incremental technical debt before their projects complete, to enable them to project lower values of N. They must therefore identify as much of the incremental technical debt as they can, and retire it, to meet the lower targets for N.

How oscillations set in

But recall that technical debt identification sometimes requires time and experience using the newly produced asset. And the reverse process also occurs. Technical artifacts that we thought were technical debt prove to be useful in unexpected ways, and actually turn out not to be debt items after all. As a result, some of the incremental technical debt that got retired before the project was completed actually should not have been retired. Eventually, people realize that this happens with uncomfortable frequency, and so the targets for N are raised once more.

Oscillations thus set in. Long delays inevitably cause them. To prevent oscillations, shorten the delays.

How to shorten delays in feedback controlling technical debt

When we use feedback to control a system, delays in that feedback can lead to instability. Trying to control technical debt is no exception. With technical debt we can shorten delays in several ways.

  • If the asset is meant for human use, involve representatives of the user population in the development and design process as soon as practical. Have them exercise the asset, or prototypes, early. Listen to their suggestions. Observe how they use the asset.
  • If the asset must interact with non-human assets, exercise it early and often. Don’t think of this as testing, though it might look very much like testing. What you’re actually doing is searching for shortcomings in how the asset interacts with non-human assets, in design and implementation in an asset that already works.
  • Subject the asset to multiple reviews all along the development trajectory. Don’t wait for final release to review it.

These practices expose technical debt items early—potentially, during initial design—thereby reducing delays in identifying what is and what isn’t technical debt. They help to advance the date at which we uncover missing capabilities or capabilities designed or implemented in awkward ways. No surprise, I’m sure, but these practices are consistent with Agile approaches to technological development.

Indirect effects can add to delayed recognition of technical debt

Most of the argument above assumed that the incremental technical debt associated with the project was incurred within the asset undergoing development or maintenance. But technical debt can occur in other assets as well. When the development team is unaware of such “remote” or “indirect” incremental technical debt, recognition of that new incremental technical debt can be significantly delayed. The project’s N (the ratio of incremental technical debt to project budget) will appear to be smaller that it actually is, until that remote incremental technical debt is recognized.

This form of delay is likely to occur when the debt incurred is asset-exogenous. Recall the example of line extension of mobile phones. In that example, the enterprise incurs technical debt in one set of products as a result of the introduction of a different product. In some cases, the newly incurred technical debt is immediately evident. When it is not, delays can be substantial.

This effect is by no means rare. Any organizational change can potentially add to the technical debt portfolio—reorganizations, acquisitions, expansions, wholly new products, and much more.

Last words

Interventions at the leverage points of an organization can produce the changes we want with a minimum of effort. Some subtlety is involved, because Meadows’ leverage points are expressed at a high level of abstraction.  But applying them to the problem of technical debt management is a promising approach.

Bookmark this post. I’ll be linking to more examples of using leverage points to manage technical debt. So far:

References

[Foganholi 2015] Lucas Borante Foganholi, Rogério Eduardo Garcia, Danilo Medeiros Eler, Ronaldo Celso Messias Correia, and Celso Olivete Junior. “Supporting technical debt cataloging with TD-Tracker tool,” Advances in Software Engineering 2015, 4.

Available: here; Retrieved: July 7, 2018

Cited in:

[Furnham 1986] Adrian Furnham. “Response bias, social desirability and dissimulation,” Personality and Individual Differences 7:3, 385-400, 1986.

Cited in:

[Meadows 1997] Donella H. Meadows. “Places to Intervene in a System,” Whole Earth, Winter 1997.

Available: here; Retrieved: June 28, 2018

Cited in:

[Meadows 1999] Donella H. Meadows. “Leverage Points: Places to Intervene in a System,” Hartland VT: The Sustainability Institute, 1999.

Available: here; Retrieved: June 2, 2018.

Cited in:

[Meadows 2008] Donella H. Meadows and Diana Wright. Thinking in Systems: A Primer. White River Junction, VT: Chelsea Green Publishing, 2008.

Order from Amazon

Cited in:

Other posts in this thread

Using SMART goals for technical debt reduction

Last updated on July 8th, 2021 at 01:06 pm

Attempting to reduce technical debt by setting so-called “SMART goals” in the obvious way can often disappoint. SMART, due to George T. Doran [Doran 1981], is widely used for expressing management goals. “SMART” is an acronym for “Specific, Measurable, Attainable, Realistic, and Time-boxed.” The last three words are available in various alternative ways. Doran himself used “assignable, realistic, and time-related.”

SMART is deeply embedded in management culture. Many assume without investigation that expressing technical debt goals using the SMART pattern will produce desired results. Also embedded in management culture is the aphorism, “You get what you measure.” [Ariely 2010]  [Bouwers 2010] A typical technical debt reduction goal: “Reduce technical debt by 20% per year for the next five years.”

SMART goals in their simplest form are ineffective for technical debt

Prof. George T. Doran (1939-2011), creator of the S.M.A.R.T acronym for setting management objectives
Prof. George T. Doran (1939-2011), creator of the S.M.A.R.T acronym for setting management objectives. Watch a 2010 interview of Prof. Doran at YouTube.
There’s ample support for a claim that applying the SMART technique in direct ways will be ineffective. Much employee behavior affects technical debt indirectly. It can overwhelm the effects of employee behaviors that affect technical debt indirectly. The direct approach does cause some employees to adopt desirable behaviors. But their impact isn’t significant enough compared to the effects of the behaviors that affect technical debt indirectly. Employees who see little connection between their own activities and the burden of technical debt can unwittingly have enormous impact. Moreover, many are subject to competing constraints on their behaviors that then cause them to act in ways that increase technical debt.

That’s why it’s necessary for management to develop a series of SMART goals that affect behaviors that have indirect effects on technical debt. In the first part of this post, “Setting a direct SMART goal for technical debt reduction is problematic,” I explore the problems inherent in the direct approach. In the second part, “How to set SMART goals for technical debt,” I provide examples of SMART goals that touch on behaviors that have indirect effects on technical debt.

Setting a direct SMART goal for technical debt reduction is problematic

Let’s begin by exploring some of the problems with the direct approach. In this section, I assume that management has set a SMART goal for the enterprise in the form, “Reduce technical debt by 20% for each of the next five years.” But there’s nothing special about the numbers. My comments below apply to the form of the goal, rather than the specific numbers.

The direct approach assumes measurability

To attain a goal of a 20% reduction in technical debt in a given year, we must be able to measure the level of technical debt. We measure it at the beginning of the year and at the end of the year. Presumably we do so with confidence in the 90% range or better. Such a measurement with the precision required might not be possible. Moreover, in most cases the probability that such a measurement is possible is low. For these reasons, setting periodic goals for total technical debt isn’t a useful management tool.

Consider a simple example. One common form of technical debt is missing or incompletely implemented capability. In some instances, the metaphorical principal (MPrin) of a given instance of this debt in the current year can change spontaneously to a dramatically larger value in the following year (or even the following week). This can happen due to changes in the underlying asset unrelated to the technical debt. Ot it can happen due to debt contagion. Or it can happen due to any number of other reasons. When this happens, the technical debt retirement effort for that year can appear to have suffered a serious setback. Setbacks like this can happen even though the technical debt retirement teams have been performing perfectly well.

The direct approach assumes a static principal

With most financial debts, a loan agreement sets the principal amount. Moreover, we can compute the principal at any time given the mathematical formulas specified in the loan agreement.

By contrast, in many cases, the metaphorical principal amount of a technical debt might be neither fixed nor readily computable. We can estimate the MPrin of a given kind of technical debt at a given time, and we can even make forward projections. But they are merely estimates, and their error bars can be enormous. See “Policy implications of the properties of MPrin” and “Useful projections of MPrin might not be attainable.”

The direct approach focuses on MPrin, not MICs

Objectives expressed in terms of the volume of technical debt—the total MPrin—are at risk of missing the point. Total MPrin isn’t what matters most. What matters is MICs—the total cost of carrying the debt. Even more important is the timing of arrival of the MICs. See “The Principal Principle: Focus on MICs.”

And like MPrin, MICs can vary in wild and unpredictable ways. For example, the MICs for a piece of technical debt borne by an asset that isn’t undergoing maintenance or enhancement can be zero; in a later time period, when that asset is undergoing enhancement, the MICs can be very high indeed. See “MICs on technical debt can be unpredictable” for a detailed discussion.

Priority setting for technical debt retirement is most effective when it accounts for the timing of MICs. For example, suppose we know that we must enhance a particular asset by FY21 Q3. And suppose we know that it bears technical debt that adds to the cost of the enhancement. Then retiring that debt in FY20 would be advisable. But if that technical debt has zero MICs for the foreseeable future, retiring it might not be worth the effort.

The direct approach fails to distinguish legacy technical debt from incremental technical debt

Unless policies are already in place governing the formation of incremental technical debt, technical debt retirement programs might encounter severe difficulty. New development and maintenance and enhancement of existing assets are ongoing. They generally produce technical debt in various forms. The technical debt retirement program might simply be unable to keep up with new debt formation.

The direct approach fails to anticipate the formation of enterprise-exogenous technical debt

Technical debt can sometimes form as a result of innovations, changes in standards, or changes in regulations that occur entirely external to the enterprise. I call such technical debt enterprise-exogenous. When this happens, the technical debt retirement effort can appear to have suffered a serious setback, even though the technical debt retirement teams might have been performing perfectly well. Before initiating a technical debt reduction program, it’s wise to first deploy a program that’s capable of retiring technical debt at a pace that at least equals the pace of formation of enterprise-exogenous technical debt.

Incurring technical debt is sometimes the responsible thing to do

At times, incurring technical debt is prudent. In these situations, accepting the debt you’ve incurred—even for the long term—might be appropriate. Strict goals about total technical debt can lead to reluctance to incur debt that has a legitimate business purpose. To prevent this, goals for total technical debt must be nuanced enough to deal with these situations. Goals for total technical debt that adhere strictly to the SMART goal pattern sometimes lack the necessary level of nuance.

How to set SMART goals for technical debt

SMART goals can work for technical debt management, but we must relate them to behavioral choices. Here are some examples of SMART goals that can be effective elements of a technical debt management program. Some of these examples are admittedly incomplete. For example, I offer no proof of assignability, attainability, or realism. Such attributes can vary from organization to organization. And we must allocate the goal in question across multiple organizational elements in ways peculiar to the organization.

At least 30% of incremental technical debt will be secured technical debt at the end of Year 1; 60% by the end of Year 2

Incremental technical debt is technical debt that’s incurred in the course of work currently underway or just recently completed. Because it’s so well understood, its MPrin can be estimated with higher precision than is usually possible with legacy technical debt. That precision is needed for defining the collateral and resources used to secure the debt.

A secured technical debt, like a secured financial debt, is one for which the enterprise reserves the resources needed to retire the debt. However, unlike a financial debt, the resources required to retire a technical debt might not be purely financial. Beyond financial resources, they might include particular staff, equipment, test beds, and downtime. The commitment might extend beyond the current fiscal period. Secured technical debt is a powerful means of driving down total technical debt burden, but it might require modification of internal budget management processes and fiscal reporting. Policymakers can help in designing and deploying the necessary changes.

Within one year, at least 50% of all incremental technical debt will be retired within one year of its origination; 70% within 18 months

This goal also exploits the fact that we can estimate incremental technical debt with relatively high precision. As a goal, it builds on the goal above by requiring that the organization actually expend as intended the resources pledged to retire incremental debts.

Within one year, all engineers and their direct supervisors will be educated in basic technical debt concepts

The educational materials will be developed in the next five months and piloted with 10% of the technical staff within seven months. The material will include an online proficiency test that 90% of engineers will have successfully passed within a year.

Within one year, 90% of project plans will include projections of the MPrin of the incremental technical debt they expect to generate for each delivery cycle

This information is useful for making forward projections of resources needed to secure incremental technical debt. Tracking the accuracy of these projections helps project planners improve their estimates.

Within one year, initiate a practice of identifying the top five forms of legacy technical debt, ranked by the volume of the contagion

Debt contagion is the propagation of a given form of technical debt by creating new system elements or assets in forms compatible with elements already identified as technical debt. By examining the body of incremental technical debt created enterprise-wide in a given time period (say, by fiscal quarter), we can determine the portion of that incremental debt that results from contagion, for each type of contagious legacy technical debt. This data is needed to identify the most contagious forms of legacy technical debt. They are prime candidates for debt retirement.

Within one year, initiate an industrial intelligence practice that is responsible for projecting the formation of enterprise-exogenous technical debt

This group must have a sophisticated grasp of the technologies in use within the enterprise that already bear enterprise-exogenous technical debt, or which could be subject to the formation of enterprise-exogenous technical debt. Its responsibilities cover enterprise products and services, as well as enterprise infrastructure. It issues advisories as needed, and an annual forecast. The group is also responsible for recommending and monitoring participation in industrial standards organizations. The group reports to the CIO or CTO.

References

[Ariely 2010] Dan Ariely. “You are what you measure,” Harvard Business Review 88:6, p. 38, 2010.

This article is probably the source of the adage “You are what you measure.” Personally, I believe it’s overstated. That is, it’s true in the large, perhaps, but not in detail. Moreover, there are some things that we are that can’t be measured. But it’s important to understand the content of this article because so many people take it as dogma. Available: here; Retrieved: June 4, 2018

Cited in:

[Bouwers 2010] Eric Bouwers, Joost Visser, and Arie van Deursen. “Getting What You Measure: Four common pitfalls in using software metrics for project management,” ACM Queue 10: 50-56, 2012.

Available: here; Retrieved: June 4, 2018

Cited in:

[Doran 1981] George T. Doran. “There’s a S.M.A.R.T. Way to Write Management’s Goals and Objectives”, Management Review, 70:11, pp. 35-36, 1981.

Cited in:

[Foganholi 2015] Lucas Borante Foganholi, Rogério Eduardo Garcia, Danilo Medeiros Eler, Ronaldo Celso Messias Correia, and Celso Olivete Junior. “Supporting technical debt cataloging with TD-Tracker tool,” Advances in Software Engineering 2015, 4.

Available: here; Retrieved: July 7, 2018

Cited in:

[Furnham 1986] Adrian Furnham. “Response bias, social desirability and dissimulation,” Personality and Individual Differences 7:3, 385-400, 1986.

Cited in:

[Meadows 1997] Donella H. Meadows. “Places to Intervene in a System,” Whole Earth, Winter 1997.

Available: here; Retrieved: June 28, 2018

Cited in:

[Meadows 1999] Donella H. Meadows. “Leverage Points: Places to Intervene in a System,” Hartland VT: The Sustainability Institute, 1999.

Available: here; Retrieved: June 2, 2018.

Cited in:

[Meadows 2008] Donella H. Meadows and Diana Wright. Thinking in Systems: A Primer. White River Junction, VT: Chelsea Green Publishing, 2008.

Order from Amazon

Cited in:

Other posts in this thread

Zero tolerance and work-to-rule create adversarial cultures

Last updated on July 8th, 2021 at 01:16 pm

Defining technical debt explicitly enough for project objectives is difficult. Confronted with this difficulty, some internal customers of technologists adopt a zero-tolerance approach to technical debt. But rarely do they define technical debt explicitly. Post-delivery, when customers discover technical debt, they hold technologists responsible. They do so even in cases when no one could have predicted that a specific artifact would eventually become technical debt. This establishes an adversarial culture in which technologists contend with their internal customers. To defend themselves, technologists sometimes adopt a work-to-rule approach to their work.

How adversarial cultures develop

Delayed or cancelled flights can indicate that pilots or others are engaged in a work-to-rule action
Trouble at the airport. When airline pilots engage in work-to-rule actions, the immediate result can be large numbers of delayed or cancelled flights. The longer-term result might be beneficial to pilots, the airline, and the public, but only if labor peace can be restored, and the damage to the flying public can be overcome. So it is with work-to-rule deliveries as a way of dealing with zero-tolerance technical debt policies. The organization must overcome the adversarial culture that results from indiscriminate attempts to control technical debt. Technologists do gain some measure of protection by working to rule, but the longer-term benefit of the organization’s learning to manage technical debt arrives only if the adversarial culture can be overcome. Image (cc) Hotelstvedi courtesy Wikimedia.
And that’s when the trouble begins.

Within this adversarial dynamic, technologists try to protect themselves against future recriminations by “working to rule.” They perform only work that the internal customer specifies. If they find something else that needs work, they perform that work only if they successfully obtain the customer’s approval. Some customers continue to adhere to zero-tolerance policies with respect to technical debt. But engineers cannot meet such non-specific requirements. Because technologists are “working to rule,” they use the ambiguity of the zero-tolerance requirement to assert that they performed all explicitly specified work. This level of performance is analogous to the work-to-rule actions of some employees involved in labor disputes with their employers. In these actions, employees are literally in compliance with the requirements of the employer, but only literally [LIBCom 2006].

Preventing formation of an adversarial culture

Requiring that deliverables be free of technical debt contributes to formation of an adversarial culture. In such cultures the adversaries are the technologists and their internal customers. Shedding that adversarial culture can be difficult once it sets in. Compelling employees, vendors, or contractors to deliver work that’s free of all technical debt is therefore unlikely to succeed. Whether employees or contractors perform the work in-house, or the work is outsourced, the results can be problematic. In the context of an adversarial culture, deliverables that meet the minimum possible interpretation of the stated objectives are almost certain to carry unacceptable levels of technical debt. What can we do to prevent this?

To avoid creating an adversarial culture, we can specify in project objectives the total removal of some kinds of technical debt. To ensure steady progress, develop a statement of objectives that includes complete retirement of at least one well-defined class of technical debt. Emphasize debt classes that have the highest anticipated MICs in the near term. Address other well-defined classes of technical debt on a best-effort basis.

We must accept as the “cost of doing business,” any other forms of technical debt that remain at the end of a given project. We must also accept that some artifacts might later become technical debt, even though they aren’t at present. We’ll get to them, but unfortunately, not this time.

References

[Ariely 2010] Dan Ariely. “You are what you measure,” Harvard Business Review 88:6, p. 38, 2010.

This article is probably the source of the adage “You are what you measure.” Personally, I believe it’s overstated. That is, it’s true in the large, perhaps, but not in detail. Moreover, there are some things that we are that can’t be measured. But it’s important to understand the content of this article because so many people take it as dogma. Available: here; Retrieved: June 4, 2018

Cited in:

[Bouwers 2010] Eric Bouwers, Joost Visser, and Arie van Deursen. “Getting What You Measure: Four common pitfalls in using software metrics for project management,” ACM Queue 10: 50-56, 2012.

Available: here; Retrieved: June 4, 2018

Cited in:

[Doran 1981] George T. Doran. “There’s a S.M.A.R.T. Way to Write Management’s Goals and Objectives”, Management Review, 70:11, pp. 35-36, 1981.

Cited in:

[Foganholi 2015] Lucas Borante Foganholi, Rogério Eduardo Garcia, Danilo Medeiros Eler, Ronaldo Celso Messias Correia, and Celso Olivete Junior. “Supporting technical debt cataloging with TD-Tracker tool,” Advances in Software Engineering 2015, 4.

Available: here; Retrieved: July 7, 2018

Cited in:

[Furnham 1986] Adrian Furnham. “Response bias, social desirability and dissimulation,” Personality and Individual Differences 7:3, 385-400, 1986.

Cited in:

[LIBCom 2006] “Work-to-rule: a guide.” libcom.org.

Available: here; Retrieved: May 9, 2017.

Cited in:

[Meadows 1997] Donella H. Meadows. “Places to Intervene in a System,” Whole Earth, Winter 1997.

Available: here; Retrieved: June 28, 2018

Cited in:

[Meadows 1999] Donella H. Meadows. “Leverage Points: Places to Intervene in a System,” Hartland VT: The Sustainability Institute, 1999.

Available: here; Retrieved: June 2, 2018.

Cited in:

[Meadows 2008] Donella H. Meadows and Diana Wright. Thinking in Systems: A Primer. White River Junction, VT: Chelsea Green Publishing, 2008.

Order from Amazon

Cited in:

Other posts in this thread

Useful projections of MPrin might not be attainable

Last updated on July 8th, 2021 at 11:50 am

SummaryExpect the unexpected with technical debt retirement efforts. Technical debt retirement efforts can conflict with ongoing operations, maintenance of existing capabilities, development of new capabilities, cyberdefense, or other technical debt retirement efforts. Although these conflicts are technical in nature, resolving them can involve business priorities at any level. Planners must be aware of these potential conflicts, and coordinate with their leaders. Policymakers can make important contributions to the enterprise mission if they can devise guidelines and frameworks for resolving these conflicts as closely as possible to the technical level.

For planning purposes, it’s necessary from time to time to make projections of debt retirement costs (MPrin) for a given class of technical debt. The need arises when planning debt retirement, or when preparing debt retirement options for determining resource allocations. Although retiring some kinds of technical debt is straightforward, other kinds of debt can become intertwined with each other. Retiring still others might appear to be easy, but actual retirement efforts expose unanticipated entanglements. Moreover, debt retirement efforts can sometimes interact with other debt retirement efforts, operations, maintenance, cyberdefense, and new development in both expected and unexpected ways. For these reasons, making estimates of the MPrin with enough precision to be useful can be notoriously difficult.

Money is fungible; people are not

A tangle of cordage
A tangle of cordage on board ship. Different kinds of technical debt can become entangled with each other. Untangling them can affect various other engineering efforts. Preparing an asset for a debt retirement effort by doing some preliminary untangling might be wise before trying to estimate the MPrin of any affected class of technical debt.
These considerations rarely arise when planning retirement of financial debts, because money is fungible. We might indeed have other uses for financial resources. But every unit of cash is equivalent to every other. That freedom isn’t necessarily available when planning resource allocations for technical debt retirement.

For example, not every engineer is equally capable of addressing every problem. Some people are particularly capable for certain kinds of work, and not very capable for other kinds. The problem of scheduling specialists is notorious for generating bottlenecks. And split assignments create even more trouble. People aren’t fungible.

Last words

Planning retirement of a particular set of technical debt classes can be complicated. Such planning requires knowledge of any efforts with which that retirement effort might interact. That information might not be available or might not be known. In general, preliminary work to decouple these activities—often called ”refactoring”—can

Related posts

Debt contagion: how technical debt can create more technical debt

Last updated on July 7th, 2021 at 11:08 am

Decisions to defer technical debt retirement must take into account phenomena that if left unattended can lead to three undesirable outcomes. First, deferring technical debt retirement can increase the volume of the deferred class of technical debt. Second, deferring technical debt retirement can increase the volume of other existing classes of technical debt. And third, deferring technical debt retirement can generate new classes of technical debt.

An example of debt contagion

Suppose Working at a computerwe have a fleet of desktop computers, running a mix of operating systems. A few of these systems are running Windows 8 and the rest are running Windows 10. We’d like to upgrade the Windows 8 machines to Windows 10, but we can’t, because some of their users need access to a (fictional) scriptable application called CRUSH. CRUSH isn’t available for Windows 10. CRUSH for Windows 10 is promised “shortly.”

Instead of asking our CRUSH users to find an alternative to CRUSH, we defer the Windows 8 upgrade. We’re hoping that CRUSH for Windows 10 will soon arrive. Meanwhile, other Windows 8 users are happy to continue using Windows 8. Some of them have acquired—and have grown fond of using—another similar (fictional) scriptable package called REMOTE. REMOTE is also unavailable for Windows 10. Worse, the CRUSH user community is continuing to grow.

Thus, by deferring the Windows 8 upgrade, we’ve made space for additional problems preventing the upgrade to Windows 10. The technical debt associated with the Windows 8 upgrade now includes Windows 8 itself, and all the scripts, documents, and knowledge that are accumulating for both CRUSH and REMOTE.

Lessons learned from this example

The lesson here isn’t to ban scriptable applications. Nor is the lesson to compel desktop users to adhere to an enterprise standard. Both options create numerous problems. The main lesson this example provdes is that deferring debt retirement can enable formation of new instances of existing technical debt. In this example, the new debt includes the growth of the CRUSH user community with the assets they continue to develop, New debt also includes unrelated debt connected with the introduction of REMOTE. Thus, if we defer retirement of one class of technical debt, we must consider all costs of such deferment. Those additional costs can include expansion of the total volume of technical debt, and all its consequences, as expressed as metaphorical interest charges and MPrin.

Some of the new technical debt that forms when we leave existing debt in place is closely related to the existing debt. For example, once we’ve implemented some part of an asset in a way that we now acknowledge contains a form of technical debt, we tend to apply that same approach when we undertake extensions or enhancements, rather than using what everyone might acknowledge is a superior approach.

Introduction to debt contagion

Martini and Bosch have identified a phenomenon they call debt contagion [Martini 2015]. Because of debt contagion, creating new system elements in forms compatible with elements already identified as debt causes debt propagation. This practice helps us maintain some degree of uniformity in the asset, recognizing that in doing so we’re increasing the MPrin of a given class of technical debt. These future expansions of MPrin can be difficult to predict at the time we first incur the debt, or at any time.

However, some forms of technical debt are far less discriminating with respect to the kinds of technical debt they spawn. Debt with this property tends to be associated with the processes used to develop or maintain technological assets. In “A policymaker’s definition of technical debt,” we cite Pugh’s example of acceptance test debt as a form of technical debt [Pugh 2010].

Acceptance test debt can reduce the ability of the organization to retire other forms of technical debt. Absent automated acceptance tests, testing system components from which technical debt has recently been removed is less efficient and reliable than it would be if automated acceptance tests were available. This depressed efficiency and reliability retards debt retirement activity. It might even prevent the organization from attempting debt retirement in some circumstances. In a future post, I’ll describe how a deficient regime of reviews and inspections can also lead to incurring new technical debt, or to elevated levels of legacy technical debt.

Last words

Our final example illustrates how hardware and software interfaces can propagate technical debt. This is ironic, because interfaces were conceived to insulate one portion of an asset from others. Given a system S composed of modules, suppose that module M of S provides services other modules of S. M does contain technical debt, of a form whose retirement would simplify M’s interface. Because that change would require changes to the modules that use M’s services, we decide to defer retiring M’s debt. Meanwhile, other projects are introducing new modules into S, and, of course, they must use M’s existing interface. The MPrin of the technical debt associated with M’s interface thus expands.

Unless we provide an alternate version of M (call it M’) or an alternate interface to M, MPrin expansion can repeat whenever new modules appear in S. But even if we do provide alternatives, engineers must consciously adopt them. Although some will, others might not. Some are under severe schedule pressure. Some cannot or will not learn the new approaches. And some receive direct orders not to use the new approaches. The MPrin associated with M can thus continue to expand, albeit perhaps at a reduced rate.

Technical debt, left in place, can grow and spawn new forms of technical debt. Make technical debt retirement a priority.

References

[Ariely 2010] Dan Ariely. “You are what you measure,” Harvard Business Review 88:6, p. 38, 2010.

This article is probably the source of the adage “You are what you measure.” Personally, I believe it’s overstated. That is, it’s true in the large, perhaps, but not in detail. Moreover, there are some things that we are that can’t be measured. But it’s important to understand the content of this article because so many people take it as dogma. Available: here; Retrieved: June 4, 2018

Cited in:

[Bouwers 2010] Eric Bouwers, Joost Visser, and Arie van Deursen. “Getting What You Measure: Four common pitfalls in using software metrics for project management,” ACM Queue 10: 50-56, 2012.

Available: here; Retrieved: June 4, 2018

Cited in:

[Doran 1981] George T. Doran. “There’s a S.M.A.R.T. Way to Write Management’s Goals and Objectives”, Management Review, 70:11, pp. 35-36, 1981.

Cited in:

[Foganholi 2015] Lucas Borante Foganholi, Rogério Eduardo Garcia, Danilo Medeiros Eler, Ronaldo Celso Messias Correia, and Celso Olivete Junior. “Supporting technical debt cataloging with TD-Tracker tool,” Advances in Software Engineering 2015, 4.

Available: here; Retrieved: July 7, 2018

Cited in:

[Furnham 1986] Adrian Furnham. “Response bias, social desirability and dissimulation,” Personality and Individual Differences 7:3, 385-400, 1986.

Cited in:

[LIBCom 2006] “Work-to-rule: a guide.” libcom.org.

Available: here; Retrieved: May 9, 2017.

Cited in:

[Martini 2015] A. Martini and J. Bosch. “The danger of architectural technical debt: Contagious debt and vicious circles,” Working IEEE/IFIP Conf. Softw. Arch., 2015.

Cited in:

[Meadows 1997] Donella H. Meadows. “Places to Intervene in a System,” Whole Earth, Winter 1997.

Available: here; Retrieved: June 28, 2018

Cited in:

[Meadows 1999] Donella H. Meadows. “Leverage Points: Places to Intervene in a System,” Hartland VT: The Sustainability Institute, 1999.

Available: here; Retrieved: June 2, 2018.

Cited in:

[Meadows 2008] Donella H. Meadows and Diana Wright. Thinking in Systems: A Primer. White River Junction, VT: Chelsea Green Publishing, 2008.

Order from Amazon

Cited in:

[Pugh 2010] Ken Pugh. “The Risks of Acceptance Test Debt,” Cutter Business Technology Journal, October 2010, 25-29.

Cited in:

Related posts

Policy implications of the properties of MPrin

Last updated on July 8th, 2021 at 11:48 am

Formulating sound policy vis-à-vis technical debt requires a thorough understanding of the distinction between the MPrin associated with a technical debt and the principal amount of a financial debt. The policy implications of the properties of technical debt arise from three fundamental differences between technical debt and financial debt.

MPrin can change spontaneously

For most financial debts, a formula determines the principal amount. Voluntary actions of the debtor can also affect the principal amount. For example, the debtor might make periodic payments on an installment loan, or new purchases on a credit card account. By contrast, MPrin of a technical debt can change absent any action by the “borrower.” For example, changes in regulations, standards, or technologies can all cause changes in MPrin. More: “How MPrin can change spontaneously

Technical debt can create more technical debt

Technical debt left in place can create more technical debt without the knowledge or consent of the debtor organization. By contrast, the principal amount of a financial debt can grow, but law or regulation requires notification—and in some cases consent—of the debtor. More: “How MPrin can change spontaneously

Projecting MPrin with useful precision might not be possible

The cost of retiring a technical debt can depend on how the asset bearing the debt has changed over the life of the debt. And it can depend on what other projects the enterprise is executing at debt retirement time. These factors are difficult to predict. By contrast, projecting the principal amount of a financial debt is formulaic. More: “Useful projections of MPrin might not be attainable

A pole full of wires
A pole full of wires. Technical debt is everywhere.
The policy implications of these properties of MPrin can be profound. First, spontaneous change in MPrin implies a need for investments in market and technological intelligence. The intelligence of greatest value focuses specifically on potential effects on technical debt. Second, existing technical debt can lead to creating new instances of that debt or other debts. We can limit this “contagion” if we know what kinds of technical debt are most likely to exhibit this phenomenon. Finally, the difficulty of projecting MPrin implies that typical reliance on analytical modeling of enterprise asset evolution in preference to human judgment might be unwise. A wiser course might be investment in employee retention programs focused on the individuals who can provide the necessary wisdom.

This is just a sketch of the problems policymakers confront when dealing with the properties of MPrin. I’ll be addressing them in more detail in future posts.

References

[Ariely 2010] Dan Ariely. “You are what you measure,” Harvard Business Review 88:6, p. 38, 2010.

This article is probably the source of the adage “You are what you measure.” Personally, I believe it’s overstated. That is, it’s true in the large, perhaps, but not in detail. Moreover, there are some things that we are that can’t be measured. But it’s important to understand the content of this article because so many people take it as dogma. Available: here; Retrieved: June 4, 2018

Cited in:

[Bouwers 2010] Eric Bouwers, Joost Visser, and Arie van Deursen. “Getting What You Measure: Four common pitfalls in using software metrics for project management,” ACM Queue 10: 50-56, 2012.

Available: here; Retrieved: June 4, 2018

Cited in:

[Doran 1981] George T. Doran. “There’s a S.M.A.R.T. Way to Write Management’s Goals and Objectives”, Management Review, 70:11, pp. 35-36, 1981.

Cited in:

[Foganholi 2015] Lucas Borante Foganholi, Rogério Eduardo Garcia, Danilo Medeiros Eler, Ronaldo Celso Messias Correia, and Celso Olivete Junior. “Supporting technical debt cataloging with TD-Tracker tool,” Advances in Software Engineering 2015, 4.

Available: here; Retrieved: July 7, 2018

Cited in:

[Furnham 1986] Adrian Furnham. “Response bias, social desirability and dissimulation,” Personality and Individual Differences 7:3, 385-400, 1986.

Cited in:

[LIBCom 2006] “Work-to-rule: a guide.” libcom.org.

Available: here; Retrieved: May 9, 2017.

Cited in:

[Martini 2015] A. Martini and J. Bosch. “The danger of architectural technical debt: Contagious debt and vicious circles,” Working IEEE/IFIP Conf. Softw. Arch., 2015.

Cited in:

[Meadows 1997] Donella H. Meadows. “Places to Intervene in a System,” Whole Earth, Winter 1997.

Available: here; Retrieved: June 28, 2018

Cited in:

[Meadows 1999] Donella H. Meadows. “Leverage Points: Places to Intervene in a System,” Hartland VT: The Sustainability Institute, 1999.

Available: here; Retrieved: June 2, 2018.

Cited in:

[Meadows 2008] Donella H. Meadows and Diana Wright. Thinking in Systems: A Primer. White River Junction, VT: Chelsea Green Publishing, 2008.

Order from Amazon

Cited in:

[Pugh 2010] Ken Pugh. “The Risks of Acceptance Test Debt,” Cutter Business Technology Journal, October 2010, 25-29.

Cited in:

Related posts

Technical debt and engineering resources

Last updated on July 7th, 2021 at 10:34 am

Flooding from Hurricane Katrina in New Orleans, 2005.
Flooding from Hurricane Katrina in New Orleans, 2005. The forces of Nature can overtop or undermine any levee humans can build. So it is with technology. Organizational policy and politics can overcome or undermine any technology humans can devise to attain mastery over technical debt. To master technical debt, technology isn’t enough—we must also deal with policy and politics.

Improving organizational effectiveness in technical debt management—or avoiding incurring new technical debt—should create significant savings and competitive advantages. These benefits arise from reductions in metaphorical interest charges (MICs) that result from retiring technical debt. But these benefits become available only if engineering capacity increases relative to the total debt-related workload. After the technical debt management program is in place, if the balance between engineering resources and debt-related workload becomes more favorable, then organizational effectiveness can improve. But if the balance becomes less favorable, as a result of reductions in engineering resources, organizational effectiveness won’t improve, even at lower levels of technical debt.

Unfortunately, some organizations adopt advanced technical debt management practices while reducing engineering capacity. If reductions are dramatic enough, engineering effectiveness is no better than it was before initiating the technical debt management program. The reason for this is that the engineering process isn’t the sole cause of technical debt. Improving the engineering process to eliminate technical causes of technical debt leaves nontechnical causes in place. That’s why technological solutions to the technical debt management problem might not produce benefits in organizational effectiveness and agility.

The focus of technical debt research has been technology

The focus of research in technical debt management has been on technology—recognition of technical debt, its measurement, representation, retirement, and so on. Progress on improving the engineering process has been significant, especially in software engineering, where a clear “research roadmap” has appeared [Izurieta 2017]. Effective tools for automating or partially automating technical debt detection and retirement will be widely available and very generally effective in the not-too-distant future, at least for software. But progress has transcended debt detection and retirement. Avoiding technical debt formation to the extent possible is much preferable, and in some contexts, it’s practical even today, as Trumler and Paulisch suggest [Trumler 2016].

Such developments might or might not have much impact on the limiting the effects of carrying technical debt. Given the necessary resources, engineering organizations could retire much of the technical debt now extant. That is, the will and the capacity to invest in debt retirement determines debt retirement rates. Currently, the levels of will and capacity for such activity are insufficient. But if new methods for managing technical debt become available, one might wonder whether organizations will apply resources sufficient to ensure that they actually experience a reduction in the limiting effects of technical debt.

Technological development isn’t enough

The open question is this: will technological developments alone give us control of the problem of technical debt? Perhaps not. Advancements in technical debt management do benefit organizations. But they could use that benefit to execute reductions in engineering staffing. If they do, they could divert savings to other parts of the enterprise. That would allow technical debt to remain at reduced levels that could still compromise the effectiveness of that reduced engineering staff.

For example, research has shown that schedule pressure contributes to technical debt formation and persistence. Suppose that the engineering groups of an organization become more adept at managing and preventing technical debt. Suppose further that the organization’s marketing and sales groups don’t improve their own intelligence and planning processes. Then Marketing might demand new capabilities with ever shorter timelines. That could lead to increased schedule pressure for the engineering groups. Then the enterprise might not benefit from the new technical debt management capabilities, even though the burden of technical debt has been reduced.

Until we have evidence of significant change in the behavior of non-technologists—or even acknowledgment that their behavior contributes to debt formation—we can expect the effects of nontechnical causes of technical debt to persist, and possibly even to grow.

This blog focuses on the nontechnical etiology of technical debt formation and persistence, and approaches for managing it. Watch this space.

References

[Ariely 2010] Dan Ariely. “You are what you measure,” Harvard Business Review 88:6, p. 38, 2010.

This article is probably the source of the adage “You are what you measure.” Personally, I believe it’s overstated. That is, it’s true in the large, perhaps, but not in detail. Moreover, there are some things that we are that can’t be measured. But it’s important to understand the content of this article because so many people take it as dogma. Available: here; Retrieved: June 4, 2018

Cited in:

[Bouwers 2010] Eric Bouwers, Joost Visser, and Arie van Deursen. “Getting What You Measure: Four common pitfalls in using software metrics for project management,” ACM Queue 10: 50-56, 2012.

Available: here; Retrieved: June 4, 2018

Cited in:

[Doran 1981] George T. Doran. “There’s a S.M.A.R.T. Way to Write Management’s Goals and Objectives”, Management Review, 70:11, pp. 35-36, 1981.

Cited in:

[Foganholi 2015] Lucas Borante Foganholi, Rogério Eduardo Garcia, Danilo Medeiros Eler, Ronaldo Celso Messias Correia, and Celso Olivete Junior. “Supporting technical debt cataloging with TD-Tracker tool,” Advances in Software Engineering 2015, 4.

Available: here; Retrieved: July 7, 2018

Cited in:

[Furnham 1986] Adrian Furnham. “Response bias, social desirability and dissimulation,” Personality and Individual Differences 7:3, 385-400, 1986.

Cited in:

[Izurieta 2017] Clemente Izurieta, Ipek Ozkaya, Carolyn Seaman, and Will Snipes. “Technical Debt: A Research Roadmap: Report on the Eighth Workshop on Managing Technical Debt (MTD 2016),” ACM SIGSOFT Software Engineering Notes, 42:1, 28-31, 2017. doi:10.1145/3041765.3041774

Cited in:

[LIBCom 2006] “Work-to-rule: a guide.” libcom.org.

Available: here; Retrieved: May 9, 2017.

Cited in:

[Martini 2015] A. Martini and J. Bosch. “The danger of architectural technical debt: Contagious debt and vicious circles,” Working IEEE/IFIP Conf. Softw. Arch., 2015.

Cited in:

[Meadows 1997] Donella H. Meadows. “Places to Intervene in a System,” Whole Earth, Winter 1997.

Available: here; Retrieved: June 28, 2018

Cited in:

[Meadows 1999] Donella H. Meadows. “Leverage Points: Places to Intervene in a System,” Hartland VT: The Sustainability Institute, 1999.

Available: here; Retrieved: June 2, 2018.

Cited in:

[Meadows 2008] Donella H. Meadows and Diana Wright. Thinking in Systems: A Primer. White River Junction, VT: Chelsea Green Publishing, 2008.

Order from Amazon

Cited in:

[Pugh 2010] Ken Pugh. “The Risks of Acceptance Test Debt,” Cutter Business Technology Journal, October 2010, 25-29.

Cited in:

[Trumler 2016] Wolfang Trumler and Frances Paulisch. “How ‘Specification by Example’ and Test-driven Development Help to Avoid Technical Debt,” IEEE 8th International Workshop on Managing Technical Debt. IEEE Computer Society, 1-8, 2016. doi:10.1109/MTD.2016.10

Cited in:

Related posts

Show Buttons
Hide Buttons