Technological communication risk

Last updated on February 1st, 2018 at 07:32 am

Technologists must convey what they know about long-term technology trends to enterprise strategists and others. In addition to strategists, the interested parties include internal customers of technology, product owners, product managers, project sponsors, or senior management. Within the enterprise, technologists tend to be among those most knowledgeable regarding the relative alignment between enterprise technological assets and long-term technology trends. Yet technologists frequently fail to communicate this knowledge effectively to those who need it, and that can lead to non-strategic technical debt. I call this phenomenon technological communication risk.

See no evil, hear no evil, speak no evil
Hear no evil, see no evil, speak no evil — the iconic representation of communication failure. Technical debt can result from communication failures due to unwillingness to inform others of what you know, and unwillingness to receive information from others more knowledgeable.

Technological communication risk is the risk that knowledgeable people within the enterprise don’t communicate important knowledge to the people who need it, or the people who need it aren’t receptive to it. Policymakers can address this problem by working to define the roles of all involved to specify the need for this communication, and the need to be receptive to it.

A clear understanding of long-term technology trends is important in managing technical debt. Any significant misalignment between enterprise technological assets and long-term technology trends creates a risk of incurring new technical debt. As technologies evolve, enterprise assets must evolve with them. The gap between those assets and the state of the art is a source of lost productivity and depressed organizational agility, which is our definition of technical debt.

Some technologists are better informed about technology trends than are their internal customers, product owners, product managers, project sponsors, or senior management. Technologists often do attempt to communicate what they know on an informal basis, but unless such communication is expected and defined as an official duty, their superiors and internal customers don’t always welcome the information, especially if they haven’t heard it elsewhere, or if it conflicts with what they’ve learned elsewhere, or if its implications conflict with established strategic positions.

Many technologists are aware that their superiors might not welcome their observations about technological trends or technology-based strategic vulnerabilities or opportunities. For example, one might understand why a technologist might be reluctant to alert an unreceptive senior manager to a suddenly revealed cybersecurity risk that would be very expensive to mitigate. This mechanism is especially strong when deploying adequate cyberdefense would compete for resources with other initiatives already underway, or when the negative consequences of the vulnerability are unlikely to materialize. And some tend to question technologists’ credibility when they blame the technologists for the vulnerability itself.

Situations like these can lead to the formation of new non-strategic technical debt in circumstances such as the following:
  • Management directs the technologists to produce capabilities using approaches known to the technologists to be technological dead ends.
  • Management directs the technologists to implement capabilities that don’t exploit known approaches that could open new and vital lines of business.
  • Management directs the technologists to focus resources on initiatives that in the view of the technologists lack sufficient technological imperative.

Policymakers can mitigate technological communication risk by establishing internal standards that encourage knowledgeable technologists to share what they know with internal customers, project sponsors, or senior management. Similarly, those standards can encourage internal customers, project sponsors, product owners, product managers, and senior management to take heed when knowledgeable technologists do speak up.

Other posts in this thread

Failure to communicate the technical debt concept

Last updated on May 25th, 2018 at 09:46 am

The behavior of internal customers and users of enterprise technological assets can contribute to technical debt formation and persistence. Because of these contributions, introducing effective technical debt management practices requires widespread behavioral changes on the part of those internal customers and users. Accepting these changes, and the initiative and creativity they require, is possible only if people understand the technical debt concept. When they do, they can appreciate the benefits of controlling technical debt, and the consequences of failing to control it. Similarly, when they do not understand or accept the technical debt concept, progress toward effective technical debt management is unlikely. Policymakers can contribute to the planning and execution of the required organizational transformation.

Even when the engineering teams are aware of the technical debt concept, and when they do try to manage technical debt, they cannot make much progress unless they have the support and understanding of their own management, their internal customers, and their customers’ managements. Everyone must understand that controlling technical debt — and retiring it — is a necessary engineering activity that has a business purpose. Everyone must understand that technical debt arises as a result of everyone’s behavior — not just the behavior of technologists.

A tensegrity 3-prism
A tensegrity three-prism. . Read about tensegrity structures.
Image (cc) Bob Burkhardt courtesy Wikimedia.
Part of the job of Management is to see that engineers have what they need to avoid incurring technical debt unnecessarily, and that they have what they need to retire elements of legacy technical debt on a regular basis. Internal customers must understand that communicating their long-term business strategies to Engineering is essential for limiting unnecessary creation of artifacts that become non-strategic technical debt. Only by understanding the technical debt concept can internal customers learn to avoid the behaviors that lead to non-strategic technical debt, and adopt behaviors that limit new technical debt.

Tensegrity structures provide a metaphor for organizations that have mastered the technical debt concept. Tensegrity structures use isolated rigid components in compression, held by a network of strings or cables in tension. The rigid components are usually struts or masts, and they aren’t in contact with each other.

The struts correspond to the users or customers of technological assets. The cables correspond to the engineering activities required to support the customers. The organization is stable relative to technical debt only when the two kinds of elements (struts and cables) work together, each playing its own role, but each appreciating the role of the other.

Advocating for cultural transformation

Advocates of any change to organizational culture are often seen as acting in their own self-interest. That’s a common risk associated with cultural transformation. It’s a risk that can lead to failure when inserting practices related to technical debt management into the culture. The risk is greatest when advocates for change are drawn exclusively from the technical elements of the enterprise. The ideal advocates for these ideas and practices are the internal customers of the technical organizations, and senior management.

Other posts in this thread

Failure to communicate long-term business strategy

Last updated on August 25th, 2018 at 09:47 am

Failure to communicate long-term business strategy can lead to increased technical debt, because engineering decisions that aren’t aligned with business strategy can result in what later becomes technical debt. As business strategy veers away from the assumptions underlying those misaligned engineering decisions, engineers must alter implementations to track the strategy. Technical debt can form during those alteration efforts. Moreover, the expenditure of resources to support those alteration efforts might have been unnecessary if engineers had been better informed about long-term business strategy. In some cases, those resources could have been allocated to other pursuits, including technical debt retirement. To ensure alignment of engineering decisions with long-term business strategy, engineering decision-makers must be aware of long-term and intermediate-term enterprise strategy. When they’re well informed, they can anticipate the engineering needs of the enterprise. And they’re more likely to make decisions that are compatible with strategy.

A plug-in electric vehicle being recharged
Recharging a  plug-in electric vehicle. The dominance of petroleum-powered vehicles is nearing its end. Further investment in the petroleum-based fuels infrastructure is now  inconsistent with what the global economy has chosen as its strategic intent. Electric vehicles are still out of the reach of most consumers, but they would be wise to favor long range vehicles. As electric vehicles become ascendant, petroleum filling stations will become more widely spaced, because they add to the metaphorical interest charges on the technical debt of yet-to-be-retired petroleum powered vehicles. During the transition to electric power dominance, a long-range petroleum-powered vehicle offers clear advantages over its shorter-range cousins.

Moreover, the effect is bi-directional. Strategists can benefit from understanding the effect their strategies have on technological activity. For example, consider the process of choosing among strategic options. A favorable outcome is more likely if strategists know the effects of each option on the technical debt portfolio.

To gain effective control of technical debt, senior management must regard the technical elements of the enterprise as strategic partners [Woodard 2013] [Ross 2000] [Brenner 2016a]. Policymakers can make important contributions to enhancing communication between strategists and technologists.

For example, when engineers know the general direction of the enterprise, they can focus efforts on assets that are compatible with future needs. Inversely, when they’re unaware of what the business strategy might soon require, they’re more likely to make decisions that they must later rescind.

What about legacy technical debt retirement?

Analogous considerations apply to legacy technical debt  retirement efforts. Major technical debt retirement efforts are often subject to review for alignment with enterprise strategy. But we tend not to review incidental retirement efforts that occur in the context of routine maintenance or development. Consequently, engineers might allocate effort to incidental  debt retirement unnecessarily if the asset is due for overhaul or replacement. Communicating long-term strategy effectively is likely the most reliable way to prevent such misspent effort.

Some managers elect to communicate business strategy to technologists only when they “need to know.” Often, technologists needed to know long before that.

References

[Brenner 2016a] Richard Brenner. “The Psychology and Politics of Technical Debt: How We Incur Technical Debt and Why Retiring It Is So Difficult,” Cutter Business Technology Journal, 29:3, 2016, 21-27.

Cited in:

[Ross 2000] Jeanne W. Ross and David F. Feeny. “The Evolving Role of the CIO,” in Framing the Domains of IS Management Research: Glimpsing the Future through the Past, edited by Robert W. Zmud. Pinnaflex, 2000.

Available: here; Retrieved: December 20, 2017.

Cited in:

[Woodard 2013] C. Jason Woodard, Narayan Ramasubbu, F. Ted Tschang, and V. Sambamurthy. “Design Capital and Design Moves: the Logic of Digital Business Strategy,” MIS Quarterly 37:2, 537-564, 2013.

Cited in:

Other posts in this thread

Non-technical precursors of non-strategic technical debt

Last updated on April 29th, 2018 at 06:36 am

Non-strategic technical debt is technical debt that appears in the asset without strategic purpose. We tend to introduce non-strategic technical debt by accident, or as the result of urgency, or from changes in standards, laws, or regulations—almost any source other than asset-related engineering purposes. In this group of posts I examine a variety of precursors of non-strategic technical debt that are not directly related to technology. Sources of these precursors include:

  • Communication between and among people
  • Organizational policies relating to job assignments
  • Cognitive biases [Kahneman 2011]
  • Performance management policy
  • Incentive structures
  • Organizational structures
  • Contract language
  • Outsourcing
  • …and approaches to dealing with budget depletion.

The cables of the Brooklyn Bridge are an example of non-strategic technical debt
Some of the suspension cables of the Brooklyn Bridge. Washington Roebling, the chief engineer, designed the cables to be composed of 19 “strands” of wire rope [McCullough 1972]. Each strand was to be made of 278 steel wires. Thus, the original design called for a total of 5,282 wires in each of the main cables. After the wire stringing began, the bridge company made an unsettling discovery. The wire supplier, J. Lloyd Haigh, had been delivering defective wire by circumventing the bridge company’s stringent inspection procedures. In all, Roebling estimated that 221 U.S. tons (200 metric tons) of rejected wire had been installed in the bridge. This was a significant fraction of the planned total weight of 3,400 U.S. tons (3,084 metric tons). Because they couldn’t remove the defective wire, Roebling decided to add about 150 wires to each main cable. That extra wire would be provided at no charge by Haigh [Talbot 2011]. I can’t confirm this, but I suspect that Roebling actually added 152 wires, which would be eight wires for each of the 19 strands, to make a total of 286 wires per strand, for a total of 5,434 wires. The presence of the defective wire in the bridge cables—which remains to this day—is an example of technical debt. The fraud perpetrated by Haigh illustrates how malfeasance can lead to technical debt.
I use the term precursor instead of cause because none of these conditions leads to technical debt inevitably. From the perspective of the policymaker, we can view these conditions as risks. It’s the task of the policymaker to devise policies that manage these risks.

McConnell has classified technical debt in a framework that distinguishes responsible forms of technical debt from other forms [McConnell 2008]. Briefly, we incur some technical debt strategically and responsibly, and we retire it when the time is right. We incur other technical debt for other reasons, some of which are inconsistent with enterprise health and wellbeing.

The distinction is lost on many. Unfortunately, most technical debt is non-strategic. We would have been better off  if we had never created it. Or if we had retired it almost immediately. In any case we should have retired it long ago.

It’s this category of non-strategic technical debt that I deal with in this group of posts. Although all technical debt is unwelcome, we’re especially interested in non-strategic technical debt, because it is usually uncontrolled. In these posts I explore the non-technical mechanisms that lead to formation of non-strategic technical debt. Schedule pressure is one exception. Because it’s so important, it deserves a thread of its own. I’ll address it later.

Common precursors of non-strategic technical debt

Here are some of the more common precursors of non-strategic technical debt.

I’ll be adding posts on these topics, so check back often, or subscribe to receive notifications when they’re available.

References

[Brenner 2016a] Richard Brenner. “The Psychology and Politics of Technical Debt: How We Incur Technical Debt and Why Retiring It Is So Difficult,” Cutter Business Technology Journal, 29:3, 2016, 21-27.

Cited in:

[Kahneman 2011] Daniel Kahneman. Thinking, Fast and Slow. New York: Macmillan, 2011.

Order from Amazon

Cited in:

[McConnell 2008] Steve McConnell. Managing Technical Debt, white paper, Construx Software, 2008.

Available: here; Retrieved November 10, 2017.

Cited in:

[McCullough 1972] David McCullough. The Great Bridge: The epic story of the building of the Brooklyn Bridge. New York: Simon and Schuster, 1972.

Order from Amazon

Cited in:

[Ross 2000] Jeanne W. Ross and David F. Feeny. “The Evolving Role of the CIO,” in Framing the Domains of IS Management Research: Glimpsing the Future through the Past, edited by Robert W. Zmud. Pinnaflex, 2000.

Available: here; Retrieved: December 20, 2017.

Cited in:

[Talbot 2011] J. Talbot. “The Brooklyn Bridge: First Steel-Wire Suspension Bridge.” Modern Steel Construction 51:6, 42-46, 2011.

Available: here; Retrieved: December 20, 2017.

Cited in:

[Woodard 2013] C. Jason Woodard, Narayan Ramasubbu, F. Ted Tschang, and V. Sambamurthy. “Design Capital and Design Moves: the Logic of Digital Business Strategy,” MIS Quarterly 37:2, 537-564, 2013.

Cited in:

Related posts

Show Buttons
Hide Buttons