Accounting for technical debt

Last updated on September 16th, 2018 at 03:28 pm

With all the talk of technical debt these days, it’s a bit puzzling why there’s so little talk in the financial community about how to go about accounting for technical debt [Conroy 2012]. Perhaps one reason for this is the social gulf that exists between the financial community and the community most keenly aware of the effects of technical debt — the technologists. But another possibility is the variety of mechanisms compelling technologists to leave technical debt in place and move on to other tasks.

Accounting for technical debt isn’t the same as measuring it
Accounting for technical debt isn’t the same as measuring it. We usually regard our accounting system as a way of measuring and tracking the financial attributes of the enterprise. As such, we think of those financial attributes as representations of money. Technical debt is different. It isn’t real, and it isn’t a representation of money — it’s a representation of resources. Money is just one of those resources. Money is required to retire technical debt, and money is consumed when we carry technical debt, but other kinds of resources are also required. Sometimes we forget that when we account for technical debt.

Here’s an example. One common form of technical debt is the kind first described by Cunningham [Cunningham 1992]. Essentially, when we complete a project, we often find that we’ve advanced our understanding of what was actually needed to accomplish our goals. And we’ve advanced our understanding to such an extent that we recognize that we should have taken a different approach. Fowler described this kind of technical debt as, “Now we know how we should have done it.” [Fowler 2009] At this point, typically, we disband the team and move on to other things, leaving the technical debt outstanding, and often, undocumented and soon to be forgotten.

A (potentially) lower-cost approach involves immediate retirement of the debt and a re-release of the asset — an “echo release” — in which the asset no longer carries the technical debt we just incurred and immediately retired. But because echo releases usually offer no immediate, evident advantage to the people and assets that interact with the asset in question, decision-makers have difficulty allocating resources to echo releases.

This problem is actually due, in part, to the effects of a shortcoming in management accounting systems. Most enterprise management accounting systems track effectively the immediate costs associated with technical debt retirement projects. They do a much less effective job of representing the effects of failing to execute echo releases, or failing to execute debt retirement projects in general. The probable cause of this deficiency is the distributed nature of the MICs — the metaphorical interest charges associated with carrying a particular technical debt. The MICs appear in multiple forms: lower productivity, increased time-to-market, loss of market share, elevated voluntary turnover in the ranks of technologists, and more (see “MICs on technical debt can be difficult to measure”). These phenomena are poorly represented in enterprise accounting systems.

Decision-makers then adopt the same bias that afflicts the accounting system. In their deliberations regarding resource allocation, they emphasize only the cost of debt retirement, often omitting from consideration altogether any mention of the cost of not retiring the debt, which can be ongoing.

If we do make long-term or intermediate-term projections of costs related to carrying technical debt or costs related to debt retirement releases, we do so in the context of a cost/benefit computation as part of the proposal to retire the debt. Methods vary from proposal to proposal. Many organizations lack a standard method for making these projections. And because there’s no standard method for estimating costs, comparing the benefits of different debt retirement proposals is difficult. This ambiguity and variability further encourages decision-makers to base their decisions solely on current costs, omitting consideration of projected future benefits.

Dealing with accounting for technical debt

Relative to technical debt, the accounting practice perhaps most notable for its absence is accounting for outstanding technical debts as liabilities. We do recognize outstanding financial debt as such, but few balance sheets — even those for internal use only — mention outstanding technical debt. Ignorance of the liabilities imposed by outstanding technical debt can cause decision-makers to believe that the enterprise has capacity and resources that it doesn’t actually have. Many of the problems associated with high levels of technical debt would be alleviated more readily if we began to track our technical debts as liabilities — even if we did so for internal purposes only.

But other shortcomings in accounting practices can create additional problems almost as severe.

Addressing the technical-debt-related shortcomings of accounting systems requires adopting enterprise-wide patterns for proposals, which gives decision-makers meaningful comparisons between different technical debt retirement options and between technical debt retirement options and development or maintenance options. One area merits focused and immediate attention: estimating MPrin and estimating MICs.

Standards for estimating MPrin are essential for estimating the cost of retiring technical debt. Likewise, standards for estimating MICs, at least in the short term, are essential for estimating the cost of not retiring technical debt. Because both MPrin and MICs can include contributions from almost any enterprise component, merely determining where to look for contributions to MPrin or MICs can be a complex task. So developing a checklist of potential contributions can help proposal writers develop a more complete and consistent picture of the MICs or MPrin associated with a technical debt. Below are three suggestions of broad areas worthy of close examination.

Revenue stream disruption

Technical debt can disrupt revenue streams either in the course of being retired, or when defects in production systems need attention. When those systems are taken out of production for repairs or testing, revenue capture might undergo short disruptions. Burdens of technical debt can extend those disruptions, or increase their frequency.

For example, a technical debt consisting of the absence of an automated test can lengthen a disruption while the system undergoes manual tests. A technical debt consisting of a misalignment between a testing environment and the production environment can allow defects in a repair or enhancement to slip through, creating new disruptions as those new defects get attended to. Even a short disruption of a high-volume revenue stream can be expensive.

Some associations between classes of technical debt and certain revenue streams can be discovered and defined in advance of any debt retirement effort. This knowledge is helpful in estimating the contributions to MICs or MPrin from revenue stream disruption.

Extended time-to-market

Although technologists are keenly aware of productivity effects of technical debt, these effects can be small compared to the costs of extended time-to-market. In the presence of outstanding technical debt, time-to-market expands not only as a result of productivity reduction, but also from resource shortages and resource contention. Extended time-to-market can lead to delays in realizing revenue potential, and persistent and  irreparable reductions in market share. To facilitate comparisons between different technical debt retirement proposals, estimates of these effects should follow standard patterns.

Data flow disruption

All data flow disruptions are not created equal. Some data flow processes can detect their own disruptions and backfill when necessary. For these flows, the main consequence that might contribute to MICs or MPrin is delay. And the most expensive of these are delays in receipt of orders, delays in processing orders, and delays in responding to anomalous conditions. Data flows that cannot detect disruptions are usually less critical, but they nevertheless have costs too. All of these consequences can be modeled and estimated, and we can develop standard packages for doing so that we can apply repeatedly to MICs or MPrin estimates for different kinds of technical debt.

Last words

Estimates of MICs or MPrin are helpful in estimating the costs of retiring technical debt. They’re also helpful in estimating the costs of not retiring technical debt. In either case, they’re only estimates, and as such, they have error bars and confidence limits. The accounting systems we now use have no error bars. That, too, is a shortcoming that must be addressed.

References

[Conroy 2012] Patrick Conroy. “Technical Debt: Where Are the Shareholders' Interests?,” IEEE Software, 29, 2012, p. 88.

Available: here; Retrieved: August 15, 2018.

Cited in:

[Cunningham 1992] Ward Cunningham. “The WyCash Portfolio Management System.” Addendum to the Proceedings of OOPSLA 1992. ACM, 1992.

Cited in:

[Fowler 2009] Martin Fowler. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009.

Available here; Retrieved January 10, 2016.

Cited in:

Other posts in this thread

Feature bias: unbalanced concern for capability vs. sustainability

Enterprise decision-makers affected by feature bias tend to harbor distorted views of the importance of new capability development compared to technical debt management. This tendency is likely due to the customer’s relative sensitivity to features, and relative lack of awareness of sustainability. Whatever the cause, customers tend to be more attracted to features than they are to indicators of sound technical debt management and other product sustainability practices. This tendency puts decision-makers at risk of feature bias: unbalanced concern for capability vs. sustainability.

Alaska crude oil production 1990-2015
Alaska crude oil production 1990-2015. This chart [Yen 2015] displays Alaska crude oil produced and shipped through the Trans Alaska Pipeline System (TAPS) from 1990 to 2015. Production had dropped by 75% in that period, and the decline is projected to continue. In January 2018, in response to pressure from Alaskan government officials and the energy industry, the U.S. Congress passed legislation that opened the Arctic National Wildlife Refuge to oil exploration, despite the threat to ecological sustainability that exploration poses. If we regard TAPS as a feature of the U.S. energy production system, we can view its excess capacity as a source of feature bias bias, creating pressure on decision-makers to add features to the U.S. energy system instead of acting to enhance the sustainability of Alaskan and global environmental systems [Wight 2017].
Changes in cost accounting could mitigate some of this feature bias by projecting more accurately total MICs based on historical data and sound estimation. I’ll explore possible accounting changes later in this post, and in future posts; meanwhile, let’s explore the causes and consequences of the distorted perspective I call feature bias.

For products or services offered for sale outside the enterprise, the sales and marketing functions of the enterprise represent the voice of the customer [Gaskin 1991]. But customers are generally unaware of product or service attributes that determine maintainability, extensibility, or cybersecurity — all factors that affect the MICs for technical debt. On the other hand, customers are acutely aware of capabilities — or missing or defective capabilities — in products or services. Customer comments and requests, therefore, are unbalanced in favor of capabilities as compared to maintainability, extensibility, cybersecurity, and other attributes related to sustainability. The sales and marketing functions tend to accurately transmit this unbalanced perspective to decision-makers and technologists.

An analogous mechanism prevails with respect to infrastructure and the internal customers of that infrastructure. Internal customers tend to be more concerned with capabilities — and missing capabilities — than they are with sustainability of the processes and systems that deliver those capabilities. Thus, pressure from internal customers on the developers and maintainers of infrastructure elements tends to emphasize capability at the expense of sustainability. The result of this imbalance is pressure to allocate excessive resources to capability enhancement, compared to activities that improve maintainability, extensibility, or cybersecurity, and which therefore would aid in controlling or reducing technical debt and its MICs.

Nor is this the only consequence of feature bias. It provides unrelenting pressure for increasing numbers of features, despite the threats to architectural coherence and overall usability that such “featuritis” or “featurism” present. Featurism leads, ultimately, to feature bloat, and to difficulties for users, who can’t find what they need among the clutter of features that are often too numerous to document. For example, in Microsoft Word, many users are unaware that Shift+F5 moves the insertion point and cursor to the point in the active document that was last edited, even if the document has just been freshly loaded into Word. Useful, but obscure.

Feature bias, it must be noted, is subject to biases itself. The existing array of features appeals to a certain subset of all potential customers. Because it is that subset that’s most likely to request repair of existing features, or to suggest additional features, the pressure for features tends to be biased in favor of the needs of the most vociferous segments of the existing user base. That is, systems experience pressure to evolve to better meet the needs of existing users, in preference to meeting the needs of other stakeholders or potential stakeholders who might be even more important to the enterprise than are the existing users. This bias in feature bias presents another risk that can affect decision-makers.

Organizations can take steps to mitigate the risk of feature bias. An example of such a measure might be the use of focus groups to study how education in sustainability issues affects customers’ perspectives relative to feature bias. Educating decision makers about feature bias can also reduce this risk.

At the enterprise scale, awareness of feature bias would be helpful, but awareness alone is unlikely to counter its detrimental effects, which include underfunding of technical debt management efforts. Eliminating the source of feature bias is extraordinarily difficult, because customers and potential customers aren’t subject to enterprise policy. Feature bias and feature bias bias are therefore givens. To mitigate the effects of feature bias, we must adopt policies that compel decision-makers to consider the need to deal with technical debt. One possible corrective action might be improvement of accounting practices for MICs, based, in part, on historical data. For example, since there’s a high probability that any project might produce new technical debt, it might be prudent to fund the retirement of that debt, in the form of reserves, when we fund the project. And if we know that a project has encountered some newly recognized form of technical debt, it might be prudent to reserve resources to retire that debt as soon as possible. Ideas such as these can rationalize resource allocations with respect to technical debt.

These two examples illustrate what’s necessary if we want to mitigate the effects of feature bias. They also illustrate just how difficult such a task will be.

References

[Conroy 2012] Patrick Conroy. “Technical Debt: Where Are the Shareholders' Interests?,” IEEE Software, 29, 2012, p. 88.

Available: here; Retrieved: August 15, 2018.

Cited in:

[Cunningham 1992] Ward Cunningham. “The WyCash Portfolio Management System.” Addendum to the Proceedings of OOPSLA 1992. ACM, 1992.

Cited in:

[Fowler 2009] Martin Fowler. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009.

Available here; Retrieved January 10, 2016.

Cited in:

[Gaskin 1991] Steven P. Gaskin, Abbie Griffin, John R. Hauser, Gerald M. Katz, and Robert L. Klein. “Voice of the Customer,” Marketing Science 12:1, 1-27, 1991.

Cited in:

[Wight 2017] Philip Wight. “How the Alaska Pipeline Is Fueling the Push to Drill in the Arctic Refuge,” YaleE360, Yale School of Forestry & Environmental Studies, November 16, 2017.

Available: here; Retrieved: February 8, 2018

Cited in:

[Yen 2015] Terry Yen, Laura Singer. “Oil exploration in the U.S. Arctic continues despite current price environment,” Today in Energy blog, U.S. Energy Information Administration, June 12, 2015.

Available: here; Retrieved: February 8, 2018.

Cited in:

Other posts in this thread

Balance technical debt and engineering resources

Last updated on December 11th, 2018 at 09:42 am

Improving organizational effectiveness in technical debt management—or avoiding incurring new technical debt—should create significant savings, and many competitive advantages. These benefits should arise from the reductions in metaphorical interest charges that result from retiring technical debt. But these benefits become available to the organization only if engineering capacity increases relative to the burdens presented by the remaining reduced levels of technical debt. After the technical debt management program is in place, if the balance between engineering resources and the burdens imposed by the remaining technical debt becomes more favorable, then organizational effectiveness will improve. But if the balance becomes less favorable, as a result of reductions in engineering resources,  organizational effectiveness won’t improve, even at lower levels of technical debt.

Flooding from Hurricane Katrina in New Orleans, 2005.
Flooding from Hurricane Katrina in New Orleans, 2005. Any levee humans can  build can be overtopped or undermined by the forces of Nature. So it is with  technology. Any technology humans can devise to attain mastery over technical debt can be overcome or undermined by organizational policy and organizational politics. To master technical debt, technology is not enough—we must also deal with policy and politics.

Unfortunately, it’s possible to adopt advanced technical debt management practices while at the same time reducing engineering capacity to a level such that engineering effectiveness is no better than it was before the technical debt management program was initiated. The reason for this is that the engineering process is not the sole cause of technical debt. Improving the engineering process to eliminate technical causes of technical debt leaves non-technical causes in place. That’s why technological solutions to the technical debt management problem might not be sufficient to produce benefits in organizational effectiveness and agility.

The focus of research in technical debt management has been on technology—recognition of technical debt, its measurement, representation, retirement, and so on. Progress on improving the engineering process has been significant, especially in software engineering, where a clear “research roadmap” has been developed [Izurieta 2017]. It’s reasonable to assume that effective tools for automating or partially automating technical debt detection and retirement will be widely available and very generally effective in the not-too-distant future, at least for software. But progress has not been confined to debt detection and retirement. Avoiding technical debt formation to the extent possible is much preferable, and in some contexts, it’s practical even today, as Trumler and Paulisch suggest [Trumler 2016].

But it’s also reasonable to ask whether such developments will have much impact on the limiting effects of carrying technical debt, even in software. Given the necessary resources, much of the technical debt now extant could be retired. That is, debt retirement rates are determined only by the will and the capacity to invest in debt retirement. Currently, the levels of will and capacity for such activity are insufficient. But if new methods for managing technical debt become available, one might wonder whether organizations will apply resources sufficient to ensure that they actually experience a reduction in the limiting effects of technical debt.

The open question is this: will technological developments alone suffice to gain control of the problem of technical debt? Perhaps not. Organizations could exploit the advancements in technical debt management to execute reductions in engineering staffing—and therefore cost—while they divert savings to other parts of the enterprise, thereby allowing technical debt to remain at levels that, although much reduced, are nevertheless sufficient to compromise the effectiveness of that reduced engineering staff.

For example, schedule pressure is widely recognized as contributing to technical debt formation and persistence. If engineering groups become more adept at managing and preventing technical debt, but marketing and sales groups do not improve their own intelligence and planning processes and consequently demand new capabilities with even shorter timelines than they now do, the enterprise might not benefit from the new technical debt management capabilities, even though the burden of technical debt has been reduced.

Until we have evidence of significant change in the behavior of non-technologists—or even acknowledgment that their behavior contributes to debt formation—we can expect the effects of non-technical causes of technical debt to persist, and possibly even to grow.

This blog focuses on the non-technical etiology of technical debt formation and persistence, and approaches for managing it. Watch this space.

References

[Conroy 2012] Patrick Conroy. “Technical Debt: Where Are the Shareholders' Interests?,” IEEE Software, 29, 2012, p. 88.

Available: here; Retrieved: August 15, 2018.

Cited in:

[Cunningham 1992] Ward Cunningham. “The WyCash Portfolio Management System.” Addendum to the Proceedings of OOPSLA 1992. ACM, 1992.

Cited in:

[Fowler 2009] Martin Fowler. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009.

Available here; Retrieved January 10, 2016.

Cited in:

[Gaskin 1991] Steven P. Gaskin, Abbie Griffin, John R. Hauser, Gerald M. Katz, and Robert L. Klein. “Voice of the Customer,” Marketing Science 12:1, 1-27, 1991.

Cited in:

[Izurieta 2017] Clemente Izurieta, Ipek Ozkaya, Carolyn Seaman, and Will Snipes. “Technical Debt: A Research Roadmap: Report on the Eighth Workshop on Managing Technical Debt (MTD 2016),” ACM SIGSOFT Software Engineering Notes, 42:1, 28-31, 2017. doi:10.1145/3041765.3041774

Cited in:

[Trumler 2016] Wolfang Trumler and Frances Paulisch. “How ‘Specification by Example’ and Test-driven Development Help to Avoid Technical Debt,” IEEE 8th International Workshop on Managing Technical Debt. IEEE Computer Society, 1-8, 2016. doi:10.1109/MTD.2016.10

Cited in:

[Wight 2017] Philip Wight. “How the Alaska Pipeline Is Fueling the Push to Drill in the Arctic Refuge,” YaleE360, Yale School of Forestry & Environmental Studies, November 16, 2017.

Available: here; Retrieved: February 8, 2018

Cited in:

[Yen 2015] Terry Yen, Laura Singer. “Oil exploration in the U.S. Arctic continues despite current price environment,” Today in Energy blog, U.S. Energy Information Administration, June 12, 2015.

Available: here; Retrieved: February 8, 2018.

Cited in:

Related posts

Show Buttons
Hide Buttons