The concept of MICs

Last updated on July 8th, 2021 at 11:52 am

Using the term interest to refer to the metaphorical interest charges of a technical debt is risky. The risk arises from confusing the properties of financial interest with the properties of the metaphorical interest charges on technical debt. Using an alternative term that makes the metaphor obvious can limit this risk. One such term is metaphorical interest charges, or for convenience, MICs.

Loose change
Loose change. The MICs on technical debt accumulate in two ways: (a) as “loose change,” namely, small bits of lost time, delays, and depressed productivity; and (b) as major blows to enterprise vitality in the form of lost revenue, delayed revenue, and missed market opportunities. Hard to say which category does more damage.
MICs aren’t interest charges in the financial sense. Rather, the MICs of a technical debt represent the total of reduced revenue, incidental opportunity costs, and increased costs of all kinds resulting from carrying that technical debt. (Actually, now that I think of it, MICs can include financial interest charges if we find it necessary to borrow money as a consequence of carrying technical debt.) Because the properties of MICs are very different from the properties of financial interest charges, we use the term MICs to avoid confusion with the term interest from the realm of finance.

What exactly are “metaphorical interest charges?”

Briefly, MICs are variable and often unpredictable [Allman 2012]. MICs differ from interest charges on financial debt for at least eight reasons. For any particular class of technical debt:

I examine each of these properties in more detail in the posts listed above.

References

[Allman 2012] Eric Allman. “Managing Technical Debt: Shortcuts that save money and time today can cost you down the road,” ACM Queue, 10:3, March 23, 2012.

Available: here; Retrieved: March 16, 2017

Also cited in:

Related posts

Glossary and Terminology

Last updated on July 16th, 2021 at 11:23 am

Even though technical debt has been with us for a very long time—probably since the time we began inventing technologies—the study of technical debt is relatively new. Ward Cunningham coined the term technical debt in 1992, and its meaning has evolved since then. Because universally accepted definitions for the term and associated concepts have not yet emerged, it seems necessary to have a page on this site that collects definitions.

Asset-exogenous technical debt

Exogenous technical debt is asset-exogenous when it’s brought about by an activity external to an asset, but internal to the enterprise. For example, a change in standards or regulations by some body within the enterprise can cause an asset to incur an asset-exogenous technical debt.

ATD

See Auxiliary technical debt.

Auxiliary technical debt

In the context of a Technical Debt Retirement Project (DRP) that has as an objective retiring from a specified set of assets a particular kind or particular kinds of technical debt, the ATD is the collection of instances of any other kinds of technical debt other than the kind that the DRP is trying to retire. More: “Auxiliary technical debt: Rules of engagement

Class of technical debt

On occasion, we speak of classes of technical debt and instances of that class. This can be confusing, because the words class and instance have particular meanings in software engineering. That’s not the sense in which we use the terms here. In this blog, a class of technical debt is just a collection of instances of the same kind of debt. For example, consider the “ghost ramp” described in “Technical debt in the highway system.” It belongs to the class of ghost ramps. If we were maintaining the highway system of Massachusetts, it might be convenient to consider the class of ghost ramp technical debt if we want to let a contract to demolish all ghost ramps. Each ghost ramp would then be an instance of that class.

Cognitive bias

A cognitive bias is the human tendency to make systematic errors based not on evidence, but on factors related to the thought process. Psychologists have identified and demonstrated hundreds of cognitive biases, including several that could plausibly explain failures in priority setting for technical debt retirement projects.

Confirmation bias

Confirmation bias is a cognitive bias. It’s the human tendency to favor and seek only information that confirms our preconceptions, or to avoid information that disconfirms them. For example, the homogeneity of cable news channel audiences, and the alignment between preconceptions of the audience and the slant of the newscast for that channel, are results of confirmation bias. More: “Confirmation bias and technical debt

Debt contagion

If a class of technical debt is allowed to remain outstanding, its volume can increase as a consequence of seemingly unrelated actions or decisions. Moreover, its existence can cause increases in the volume of other existing classes of technical debt, and its existence can lead to the formation of new classes of technical debt. This process is called debt contagion. More: “Debt contagion: how technical debt can create more technical debt

DRP

A (technical) Debt-Bearing Asset

DRP

In this blog, I use the term DRP to mean a (technical) Debt Retirement Project. A DRP is a project that has as an objective retiring from a specified set of assets a particular kind of technical debt (or particular kinds of technical debt). Many projects have objectives of debt retirement, at some point or other. But DRPs differ from most, in that debt retirement is their primary objective—indeed, it might be their sole objective. More: “Nine indicators of wickedness

Echo release

An echo release of an asset is a release version whose primary purpose is technical debt retirement. Typically, it’s created immediately following a release version that has created some incremental technical debt, hence the term “echo release.” The echo release is then executed to retire that incremental technical debt, and not to repair defects or add capability. More: “Accounting for technical debt

Endogenous technical debt

When we think of technical debt, we tend to think of activities that produce it relatively directly. We often imagine it as resulting solely from engineering activity, or from decisions not to undertake engineering activity. In either case the activity involved, whether undertaken or not, is activity directly involving the asset that carries the technical debt. This kind of technical debt is endogenous technical debt. The word endogenous comes from the Greek endo– (within or inside) + –genous (related to producing).  So endogenous technical debt is that portion of an asset’s debt that comes about from activity or decisions that directly involve the asset. More: “Exogenous technical debt

Enterprise-exogenous technical debt

Exogenous technical debt is enterprise-exogenous when it’s brought about by an activity external to the enterprise. For example, a change in standards or regulations by some body outside the enterprise can cause an asset to incur an enterprise-exogenous technical debt.

Exogenous technical debt

Technical debt is exogenous when it’s brought about by an activity not directly related to the assets in which the debt appears. The word exogenous comes from the Greek exo– (outside) + –genous (related to producing). So exogenous technical debt is that portion of an asset’s debt that comes about from activity or decisions that don’t involve the asset directly. More: “Exogenous technical debt

Ill-structured problem

An ill-structured problem is a problem that isn’t a well-structured problem [Simon 1973]. An example of an ill-structured problem is finding a definition for ill-structured problems. Another: designing a computer programming language. Still another, even more to the point: deciding when to retire a particular class of technical debt. NDM is more likely to be successful with ill-structured problems than is RDM.

Incremental technical debt

Incremental technical debt is either newly incurred exogenous technical debt, or technical debt that’s incurred in the course of work currently underway or just recently completed. For example, in an apartment building hallway renovation project, workmen did insert expansion joints in the sheetrock they replaced, but on the first three floors they completed, the joints were too widely separated. The remaining 22 floors were done correctly. Nine additional joints on each of the incorrect floors must be inserted eventually. The missing joints, which constitute incremental technical debt, will be inserted after the job is completed. More: “Controlling incremental technical debt

Instance of technical debt

See “Class of technical debt

Intertemporal choice

Intertemporal choice is the process by which people make decisions between options that occur at different points in time. Decisions involving intertemporal choice can be exceedingly complex, especially when options have effects that vary with time. For example, confronted with advice from technical experts regarding the urgent need to address the burden of enterprise technical debt, decision makers must consider an unpleasant possibility. To make resources available to retire the technical debt, it might be necessary to temporarily defer investment in some new products or enhancing some existing products. And if they make the recommended investments in technical debt retirement, customers won’t benefit in any visible way. So the choice reduces to one between new products and enhancements relatively sooner, versus retiring technical debt and only later attending to new products and enhancements of existing products. This dilemma is an example of what behavioral economists call intertemporal choice [Loewenstein 1992].

Key Performance Indicator (KPI)

A Key Performance Indicator (KPI) is a metric that provides meaningful insight that’s used to guide business decisions. All KPIs are metrics; not all metrics are KPIs. More: “Metrics for technical debt management: the basics

Legacy technical debt

Legacy technical debt is technical debt associated with an asset, and which exists in any form prior to undertaking work on that asset. For example, in planning a project to renovate the hallways and common areas of a high-rise apartment building, Management discovers that beneath the existing carpeting is a layer of floor tile containing asbestos. Management has decided to remove the tile. In this context, the floor tile can be viewed as legacy technical debt. It isn’t directly related to the objectives of the current renovation, but removing it will enhance the safety of future renovations, enable certification of the building as asbestos-free, and reduce the cost of eventual demolition. More: “Exogenous technical debt

Localizable technical debt

Localizable technical debt is technical debt that manifests itself as discrete chunks. Each instance is self-contained, and we can “point” to it as an instance of the debt in question. For example, if the organization regards Windows 10 as the current operating system for personal computers, and early versions of Windows as technical debt, the each computer that runs and earlier version of Windows is an instance of that technical debt. Each instance is discrete and localized. More: “Retiring localizable technical debt

Measure

A measure is the result of determining the value of a quantifier. For example, we might use the quantifier’s definition to determine a measure of how much human effort has been expended on an asset in the past fiscal quarter. More: “Metrics for technical debt management: the basics

Metric

A metric is an arithmetic formula expressed in terms of constants and a set of measures. One of the simpler metrics consists of a single ratio of two measures. For example, the metric that captures the average cost of acquiring a new customer in the previous fiscal quarter is the ratio of two measures, namely, the investment made in acquiring new customers, and the number of new customers acquired. More: “Metrics for technical debt management: the basics

MICs, or metaphorical interest charges

MICs are the metaphorical interest charges associated with a technical debt. They aren’t interest charges in the financial sense; rather, the MICs of a technical debt represent the total of reduced revenue, lost opportunities, and increased costs of all kinds borne by the enterprise as a consequence of carrying that technical debt. Because the properties of MICs are very different from the properties of financial interest charges, we use the term MICs to avoid confusion with the term interest from the realm of finance. More: “How financial interest charges differ from interest charges on technical debt

MPrin, or metaphorical principal

The MPrin of a technical debt at a give time T is the total cost of retiring that debt at time T. The total cost includes all cost factors: labor, equipment, service interruptions, revenue delays, anything. It even includes the ongoing costs of repairing defects introduced in the debt retirement process. More: “The metaphorical principal of a technical debt

Naturalistic decision-making

Naturalistic decision-making (NDM) entails situation assessment and evaluation of a single option to select a satisfactory option. [Zannier 2007] Features that define naturalistic decision-making are “time pressure, high stakes, experienced decision makers, inadequate information (information that is missing, ambiguous, or erroneous), ill-defined goals, poorly defined procedures, cue learning, context (e.g., higher-level goals, stress), dynamic conditions, and team coordination.”  [Klein 2017]

Nonstrategic technical debt

Nonstrategic technical debt is technical debt that appears in the asset without strategic purpose. We tend to introduce nonstrategic technical debt by accident, or as the result of urgency, or from changes in standards, laws, or regulations—almost any source other than asset-related engineering purposes. And at times, it appears in the asset as a result of external events beyond the boundaries of the enterprise. More: “Nontechnical precursors of nonstrategic technical debt

The planning fallacy

The planning fallacy is a cognitive bias that causes planners to underestimate costs and schedules, and over-promise benefits. They do this, in part, because they pay too little heed to past experience on similar efforts. They also rely too much on what they believe will happen on the effort they’re planning. First identified in a 1977 report by Daniel Kahneman and Amos Tversky [Kahneman 1977] [Kahneman 1979]. More: “Unrealistic optimism: the planning fallacy and the n-person prisoner’s dilemma

Policy

Organizational policy is the framework of principles that guide policymakers, decision makers, and everyone in the organization as they carry out their responsibilities. Policy might be written or not, but written policy is more likely to consistently adhered to. Interestingly, the body of organizational policy is itself subject to accumulating technical debt. More: “What is policy?

Policymaker

As I use the term in this blog, a policymaker is someone who is responsible for developing, revising, or approving organizational policies that affect technical debt management. More: “Who are the policymakers?

Quantifier

A quantifier is a specification for a measurement process designed to yield a numeric representation of some attribute of an asset or process. Quantifiers are used to obtain the values called measures, which in turn are used in computing metrics. More: “Metrics for technical debt management: the basics

Rational decision-making

Rational decision-making (RDM) is an approach to making a choice of an option from among a set of options by selecting the option that is optimal with respect to a set of quantitative criteria. [Zannier 2007] Rational choice strategies generally follow this framework: (1) Identify a set of options; (2) Identify criteria for evaluating them; (3) Assign weight to each evaluation criterion; (4) Rate the options relative to the criteria; (5) Choose the option with the highest score. Many different frameworks for implementing this strategy are available, some specialized to specific subject domains [Thokala 2016].

Refactoring

Fowler defines refactoring as “the process of changing a software system in such a way that it does not alter the external behavior of the code yet improves its internal structure” [Fowler 1999]. Although refactoring is a term specific to software development processes, the concept applies to all technological development. For example, an automobile manufacturer’s decision to alter the design of one of their model vehicles to reduce manufacturing costs can be viewed as a form of refactoring. Refactoring is a practice essential to effective technical debt management. More: “Refactoring for policymakers

Regression testing

Regression testing is a testing regimen that ensures that a previously developed and tested system still performs the same way after it has been altered or when it’s used in a new context. Regression testing is essential when we alter a system by retiring some of its technical debt.

The reification error

The reification error (also called the reification fallacy, concretism, or the fallacy of misplaced concreteness) is an error of reasoning in which we treat an abstraction as if it were a real, concrete, physical thing. Reification is useful in some applications, such as object-oriented programming and design. But when we use it in the domain of logical reasoning, troubles can arise. Specifically, we can encounter trouble when we think of “measuring” technical debt. Strictly speaking, we cannot measure technical debt. We can estimate the cost of retiring it, but estimates are only approximations. And in the case of technical debt, the approximations are usually fairly rough. To regard these estimates as measurements is to risk reifying them. Then when the actual cost of a debt retirement project is dramatically larger than the estimate, the consequences for enterprise budgets can be severe. We must always regard “measurements” of technical debt as estimates—estimates that are so prone to error that we must plan for error.  The reification error is the dual of the resilience error. More: “Metrics for technical debt management: the basics.”

The resilience error

If the reification error is an error of reasoning in which we treat an abstraction as if it were a real, concrete, physical thing, the resilience error is an error of reasoning in which we treat an abstraction as if it were more flexible, resilient, and adaptable than it actually is. When we commit the resilience error with respect to an abstraction, we’re adopting a belief, usually without justification, and possibly outside our awareness. That belief is that the familiar properties of the abstraction can survive changes in the abstraction.

Specifically, if we make changes in the abstraction, we can be certain that the familiar properties of the abstraction we modified will apply in modified form. We hold this belief without fully investigating the consequences of the changes we made in the abstraction. Or we assume incorrectly that the abstraction will accommodate any changes we make to its environment. The resilience error is the dual of the reification error. We are at risk of making the resilience error when we refactor assets to reduce their burden of technical debt. More: “The resilience error and technical debt.”

Secured technical debt

A secured technical debt, like a secured financial debt, is one for which the enterprise has reserved the resources needed to retire the debt. However, unlike a financial debt, the resources required to retire a technical debt might not be purely financial. They might include particular staff, equipment, test beds, downtime, and financial resources. The commitment might extend beyond the current fiscal period. Secured technical debt is a powerful means of driving down total technical debt burden, but it might require modification of internal budget management processes and fiscal reporting. Policymakers can help in designing and deploying the necessary changes. More: “Using SMART goals for technical debt reduction

Source and target components of a metaphor

In a metaphor of the form “A is B,” the source is the element whose attributes are being attributed to the target. For example, in “my son’s room is a war zone,” the source is the war zone, and the target is my son’s room.  More: “The structure of metaphors

Super wicked problem

A subset of wicked problems can be viewed as super wicked [Levin 2012]. Levin, et al. list the following four properties of super wicked problems: (1) Time is running out; (2) Those who cause the problem also seek to provide a solution or influence the solution; (3) The central authority needed to address the problem is weak, nonexistent, or chooses not to act effectively; (4) Policy responses discount the future irrationally. I’ve come to believe that some technical debt retirement project design can be a super wicked problem. More: “Retiring technical debt can be a super wicked problem

Tame problems

A problem is a tame problem if it fails to meet at least one of the ten criteria established by Rittel and Webber [Rittel 1973] for wicked problems. Four of the criteria: it’s an ill-structured problem; it’s incompletely defined or internally contradictory; its solutions aren’t true-or-false, but good-or-bad; and there’s no way to exhaustively describe all solutions. I’m convinced that technical debt retirement project design can be a wicked problem. A tame problem is one that fails to meet at least one of the ten criteria for wickedness. Tame problems and wicked problems thus lie at opposite ends of a “Tame/Wicked” spectrum. Technical debt retirement project design problems fall somewhere on this spectrum. More: “Degrees of wickedness.”

Taylorism

Taylorism is an approach to management developed by Frederick Winslow Taylor in the early part of the twentieth century [Taylor 1913] [Kanigel 1997]. He proposed three principles of scientific management that could produce maximum efficiency. First, managers should select the person performing the work based on science. Second, organizations should decompose tasks based on scientific principles. Third, they must separate planning from execution. These principles are the basis of what became known in software engineering as the waterfall lifecycle. The approach works well for well-structured problems, but does not work well at all for ill-structured problems. Moreover, it depends for success on repeating solutions to problems already solved, which is why it proved so valuable in early manufacturing. The unsuitability of Taylorism for ill-structured problems is an important part of the basis for the Agile approach to problem solving.

TDIQ

In the context of a Technical Debt Retirement Project (DRP), we can define the Technical Debt In Question (TDIQ). If the DRP has as an objective retiring a kind of technical debt, that kind of technical debt is the TDIQ. More: “Retiring technical debt from irreplaceable assets

Technical debt

Technical debt is any technological element that hampers development, maintenance, or enhancement efforts, through its existence or through its absence. It contributes to lower productivity or to a higher probability of defects. Or it can depress velocity in many other ways. That’s why we would like to revise, repair, replace, rewrite, create, or re-engineer it for sound engineering reasons. It can be found in—or it can be missing from—software, hardware, processes, procedures, practices, or any associated artifact, acquired by the enterprise or created within it. More: “A policymaker’s definition of technical debt

Technological communication risk

Technological communication risk is the risk that, for whatever reason, knowledgeable people within the enterprise don’t communicate important knowledge to the people who need it, or the people who need it aren’t receptive to it. More: “Technological communication risk

Temporal discounting

Temporal discounting is the human tendency to give greater value to a reward (or as economists would say, to assign greater utility to a good) the earlier it arrives. An analogous process affects perceptions of inconvenience or disutility: people assign more negative values to penalties and inconveniences the sooner they arrive. If the discount rate is constant, the discounting is termed exponential discounting or rational discounting. But other forms are possible. Hyperbolic discounting is one form of discounting at a rate that is higher for near-term arrivals than for distant-term arrivals [Laibson 1997]. Humans have been observed experimentally to favor a form of temporal discounting that is well modeled as hyperbolic discounting.

Terrifying opportunity

A terrifying opportunity arises when the organization rejects (or fails to recognize) a market opportunity because exploiting it would involve modifying an existing asset or product offering that harbors a heavy load of technical debt. The debt causes decision makers to assess that the probability of success is so low that the opportunity seems terrifying, and they therefore reject the opportunity. More: “MICs on technical debt can be difficult to measure

Well-structured problem

As defined by Simon [Simon 1973], a well-structured problem is a problem that has some or all of six characteristics. The first is the existence of a definite criterion for testing any proposed solution, and a mechanizable process for applying that criterion. Second, there is at least one problem space in which we can represent the initial problem state, the goal state, and all states that can be reached or considered while solving the problem. There are four more criteria, but these are the biggies. An example of a well-structured problem is the game of chess. RDM is useful for attacking well-structured problems.

Wicked problem

A problem is a wicked problem if it meets the ten criteria established by Rittel and Webber [Rittel 1973]. Four of the criteria: it’s an ill-structured problem; it’s incompletely defined or internally contradictory; its solutions aren’t true-or-false, but good-or-bad; and there’s no way to exhaustively describe all solutions. I’m convinced that technical debt retirement project design can be a wicked problem. More: “Self-sustaining technical knowledge deficits during contract negotiations.”

References

[Allman 2012] Eric Allman. “Managing Technical Debt: Shortcuts that save money and time today can cost you down the road,” ACM Queue, 10:3, March 23, 2012.

Available: here; Retrieved: March 16, 2017

Also cited in:

[Fowler 1999] Martin Fowler, Kent Beck (Contributor), John Brant (Contributor), William Opdyke, Don Robert, Erich Gamma (Foreword). Refactoring: Improving the Design of Existing Code. Boston: Addison-Wesley Professional; first edition (July 8, 1999).

Order from Amazon

Cited in:

[Kahneman 1977] Daniel Kahneman and Amos Tversky. “Intuitive Prediction: Biases and Corrective Procedures,” Technical Report PTR-1042-7746, Defense Advanced Research Projects Agency, June 1977.

Available: here; Retrieved: September 19, 2017

Cited in:

[Kahneman 1979] Daniel Kahneman and Amos Tversky, “Intuitive Prediction: Biases and Corrective Procedures,” Management Science 12, 313-327, 1979.

Cited in:

[Kanigel 1997] Robert Kanigel. The one best way: Frederick Winslow Taylor and the enigma of efficiency. Viking Penguin, 1997.

Order from Amazon

Cited in:

[Klein 2017] Gary Klein. Sources of Power: How People Make Decisions, 20th Anniversary Edition. Cambridge, Massachusetts: The MIT Press, 1999.

Order from Amazon

Cited in:

[Laibson 1997] David Laibson. “Golden eggs and hyperbolic discounting,” Quarterly Journal of Economics 112:2, 1997, 443-477.

Available: here; Retrieved: October 25, 2018

Cited in:

[Levin 2012] Kelly Levin, Benjamin Cashore, Steven Bernstein, and Graeme Auld. “Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change,” Policy Science 45, 2012, 123–152.

Available: here; Retrieved: October 17, 2018

Cited in:

[Loewenstein 1992] George Loewenstein and Drazen Prelec. “Anomalies in Intertemporal Choice: Evidence and an Interpretation,” Quarterly Journal of Economics, 57:2, 1992, 573-598.

Available: here; Retrieved: October 12, 2018

Cited in:

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

[Simon 1973] Herbert A. Simon. “The Structure of Ill Structured Problems,” Artificial Intelligence 4, 1973, 181-201.

Available: here; Retrieved: 10/16/18

Cited in:

[Taylor 1913] Frederick Winslow Taylor. The Principles of Scientific Management. New York: Harper & Brothers, 1913.

Available: here; Retrieved: October 16, 2018 Order from Amazon

Cited in:

[Thokala 2016] Praveen Thokala, Nancy Devlin, Kevin Marsh, Rob Baltussen, Meindert Boysen, Zoltan Kalo, Thomas Longrenn et al. “Multiple Criteria Decision Analysis for Health Care Decision Making—An Introduction: Report 1 of the ISPOR MCDA Emerging Good Practices Task Force,” Value in Health 19:1, 2016, 1-13.

Available: here; Retrieved: 10/16/18

Cited in:

[Zannier 2007] Carmen Zannier, Mike Chiasson, and Frank Maurer. “A model of design decision making based on empirical results of interviews with software designers,” Information and Software Technology 49, 2007, 637-653.

Available: here; Retrieved October 15, 2018

Cited in:

A policymaker’s definition of technical debt

Last updated on July 18th, 2021 at 03:32 pm

Servers like the ones that made this page available to you. Most servers would benefit from comparison with a policymaker’s definition of technical debt
Shown here are servers like the ones that made this page available to you. Cybersecurity is concerned with defending servers like these, among others.

Policymakers have in mind the best interests of the entire enterprise. They need a definition of technical debt that’s neutral relative to its causes and manifestations. Defining technical debt in terms of what caused it or where it lies in the enterprise could compromise that necessary neutrality.

That neutrality is important because it enables us to recognize technical debt in whatever form it takes. For example, suppose enterprise policy assumes that technical debt lies only in software. And suppose that the root causes of some instances of technical debt are new threats in the cybersecurity environment that render obsolete our cyberdefenses. Then enterprise policy vis-à-vis technical debt is likely to be ineffective. It might lead to decision makers focusing too much attention on the software development process and too little attention on the cybersecurity and threat intelligence processes.

A definition that’s useful for guiding policy

Here’s a cause-neutral and manifestation-neutral definition of technical debt. It’s what I call the policymaker’s definition [Brenner 2017a]:

Technical debt is any technological element that contributes, through its existence or through its absence, to lower productivity or to a higher probability of defects during development, maintenance, or enhancement efforts, or which depresses velocity in some other way. It is therefore something we would like to revise, repair, replace, rewrite, create, or re-engineer for sound engineering reasons. It can be found in—or it can be missing from—software, hardware, processes, procedures, practices, or any associated artifact, acquired by the enterprise or created within it.

Extending the technical debt metaphor just a bit, people often talk about the principal and the interest charges associated with a technical debt. These ideas are analogous to the principal and interest charges associated with a financial debt. They’re convenient concepts, but the parallels between finance and technology aren’t real, and that’s where the trouble lies. Read more

An important extension beyond conventional definitions

There’s one other generalization contained in this definition of technical debt that differs from most other definitions. It’s in the phrase “or missing from.” Our policymaker’s definition doesn’t require that the technical debt item actually exist. That is, the absence of something can constitute technical debt. My favorite example is one due to Ken Pugh, who defines acceptance test debt as “…the nonexistence or nonautomation of acceptance tests.” [Pugh 2010] If we want to include all sources of reduced organizational agility or unnecessary operating expense arising from technical debt, our definition must also address non-existence issues like those Pugh has identified.

The definition above is workable for systems of all kinds. Consider two examples of “hardware”:

But the definition also applies to anything that takes a technological form, including business plans, legislation, procedures, and microprocessor designs—almost anything.

References

[Allman 2012] Eric Allman. “Managing Technical Debt: Shortcuts that save money and time today can cost you down the road,” ACM Queue, 10:3, March 23, 2012.

Available: here; Retrieved: March 16, 2017

Also cited in:

[Brenner 2017a] Richard Brenner. “A Policy Maker’s Definition of Technical Debt,” Cutter Consortium Executive Update, February 27, 2017.

Cited in:

[Fowler 1999] Martin Fowler, Kent Beck (Contributor), John Brant (Contributor), William Opdyke, Don Robert, Erich Gamma (Foreword). Refactoring: Improving the Design of Existing Code. Boston: Addison-Wesley Professional; first edition (July 8, 1999).

Order from Amazon

Cited in:

[Kahneman 1977] Daniel Kahneman and Amos Tversky. “Intuitive Prediction: Biases and Corrective Procedures,” Technical Report PTR-1042-7746, Defense Advanced Research Projects Agency, June 1977.

Available: here; Retrieved: September 19, 2017

Cited in:

[Kahneman 1979] Daniel Kahneman and Amos Tversky, “Intuitive Prediction: Biases and Corrective Procedures,” Management Science 12, 313-327, 1979.

Cited in:

[Kanigel 1997] Robert Kanigel. The one best way: Frederick Winslow Taylor and the enigma of efficiency. Viking Penguin, 1997.

Order from Amazon

Cited in:

[Klein 2017] Gary Klein. Sources of Power: How People Make Decisions, 20th Anniversary Edition. Cambridge, Massachusetts: The MIT Press, 1999.

Order from Amazon

Cited in:

[Laibson 1997] David Laibson. “Golden eggs and hyperbolic discounting,” Quarterly Journal of Economics 112:2, 1997, 443-477.

Available: here; Retrieved: October 25, 2018

Cited in:

[Levin 2012] Kelly Levin, Benjamin Cashore, Steven Bernstein, and Graeme Auld. “Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change,” Policy Science 45, 2012, 123–152.

Available: here; Retrieved: October 17, 2018

Cited in:

[Loewenstein 1992] George Loewenstein and Drazen Prelec. “Anomalies in Intertemporal Choice: Evidence and an Interpretation,” Quarterly Journal of Economics, 57:2, 1992, 573-598.

Available: here; Retrieved: October 12, 2018

Cited in:

[Pugh 2010] Ken Pugh. “The Risks of Acceptance Test Debt,” Cutter Business Technology Journal, October 2010, 25-29.

Cited in:

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

[Simon 1973] Herbert A. Simon. “The Structure of Ill Structured Problems,” Artificial Intelligence 4, 1973, 181-201.

Available: here; Retrieved: 10/16/18

Cited in:

[Taylor 1913] Frederick Winslow Taylor. The Principles of Scientific Management. New York: Harper & Brothers, 1913.

Available: here; Retrieved: October 16, 2018 Order from Amazon

Cited in:

[Thokala 2016] Praveen Thokala, Nancy Devlin, Kevin Marsh, Rob Baltussen, Meindert Boysen, Zoltan Kalo, Thomas Longrenn et al. “Multiple Criteria Decision Analysis for Health Care Decision Making—An Introduction: Report 1 of the ISPOR MCDA Emerging Good Practices Task Force,” Value in Health 19:1, 2016, 1-13.

Available: here; Retrieved: 10/16/18

Cited in:

[Zannier 2007] Carmen Zannier, Mike Chiasson, and Frank Maurer. “A model of design decision making based on empirical results of interviews with software designers,” Information and Software Technology 49, 2007, 637-653.

Available: here; Retrieved October 15, 2018

Cited in:

Related posts

Technical debt in software engineering

Ward Cunningham, who coined the technical debt metaphor

Last updated on July 7th, 2021 at 10:47 am

Ward Cunningham, who coined the technical debt metaphor
Ward Cunningham, who coined the technical debt metaphor. Photo (cc) Carrigg Photography.

Ward Cunningham coined the technical debt metaphor in the context of developing a software asset [Cunningham 1992] [Cunningham 2011]. He observed that when the development process leads to new learning, re-executing the development project—or parts of the project—could lead to a better result. For this reason, among others, newly developed operational software assets can contain or depend upon artifacts he regarded as technical debt. In hindsight, the developers recognize they could remove these artifacts altogether. Or they could replace them with more elegant, effective, or appropriate forms. In this way, they could enhance maintainability, defensibility, and extensibility. To deploy the asset in pre-hindsight condition would entail an obligation to return to it in the future to implement the improvements. That obligation is Cunningham’s conception of the asset’s technical debt.

Fowler’s technical debt quadrant
Fowler’s technical debt quadrant. Intentionality is the vertical axis; Wisdom is horizontal.

In the decades since Cunningham coined the term, the meaning of technical debt has evolved. It now includes much more than Cunningham’s original concept. Martin Fowler developed a 2×2 matrix (which I interpret as Intentionality x Wisdom) that describes four different pathways that lead to technical debt creation. Cunningham’s concept corresponds to what Martin Fowler describes as, “now we know how we should have done it” [Fowler 2009].

At a conference in Dagstuhl, Germany (“Managing Technical Debt in Software Engineering”) in 2016, leading experts in software technical debt research developed a verbal definition of technical debt for software-intensive systems [Avgeriou 2016]:

In software-intensive systems, technical debt is a collection of design or implementation constructs that are expedient in the short term, but set up a technical context that can make future changes more costly or impossible. Technical debt presents an actual or contingent liability whose impact is limited to internal system qualities, primarily maintainability and evolvability.

With the definition of technical debt enlarged in this way, software engineers can focus on instances of software technical debt that reduce enterprise productivity and agility. But is this definition sufficient as a foundation for enterprise policy? I explore that question in “A policymaker’s definition of technical debt.”

References

[Allman 2012] Eric Allman. “Managing Technical Debt: Shortcuts that save money and time today can cost you down the road,” ACM Queue, 10:3, March 23, 2012.

Available: here; Retrieved: March 16, 2017

Also cited in:

[Avgeriou 2016] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman, eds. “Managing Technical Debt in Software Engineering,” Dagstuhl Reports, 6:4, 110–138, 2016.

Available: here; Retrieved: March 10, 2017.

Cited in:

[Brenner 2017a] Richard Brenner. “A Policy Maker’s Definition of Technical Debt,” Cutter Consortium Executive Update, February 27, 2017.

Cited in:

[Cunningham 1992] Ward Cunningham. “The WyCash Portfolio Management System.” Addendum to the Proceedings of OOPSLA 1992. ACM, 1992.

Cited in:

[Cunningham 2011] Ward Cunningham. “Ward Explains Debt Metaphor” (video; here; ).

Cited in:

[Fowler 1999] Martin Fowler, Kent Beck (Contributor), John Brant (Contributor), William Opdyke, Don Robert, Erich Gamma (Foreword). Refactoring: Improving the Design of Existing Code. Boston: Addison-Wesley Professional; first edition (July 8, 1999).

Order from Amazon

Cited in:

[Fowler 2009] Martin Fowler. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009.

Available here; Retrieved January 10, 2016.

Cited in:

[Kahneman 1977] Daniel Kahneman and Amos Tversky. “Intuitive Prediction: Biases and Corrective Procedures,” Technical Report PTR-1042-7746, Defense Advanced Research Projects Agency, June 1977.

Available: here; Retrieved: September 19, 2017

Cited in:

[Kahneman 1979] Daniel Kahneman and Amos Tversky, “Intuitive Prediction: Biases and Corrective Procedures,” Management Science 12, 313-327, 1979.

Cited in:

[Kanigel 1997] Robert Kanigel. The one best way: Frederick Winslow Taylor and the enigma of efficiency. Viking Penguin, 1997.

Order from Amazon

Cited in:

[Klein 2017] Gary Klein. Sources of Power: How People Make Decisions, 20th Anniversary Edition. Cambridge, Massachusetts: The MIT Press, 1999.

Order from Amazon

Cited in:

[Laibson 1997] David Laibson. “Golden eggs and hyperbolic discounting,” Quarterly Journal of Economics 112:2, 1997, 443-477.

Available: here; Retrieved: October 25, 2018

Cited in:

[Levin 2012] Kelly Levin, Benjamin Cashore, Steven Bernstein, and Graeme Auld. “Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change,” Policy Science 45, 2012, 123–152.

Available: here; Retrieved: October 17, 2018

Cited in:

[Loewenstein 1992] George Loewenstein and Drazen Prelec. “Anomalies in Intertemporal Choice: Evidence and an Interpretation,” Quarterly Journal of Economics, 57:2, 1992, 573-598.

Available: here; Retrieved: October 12, 2018

Cited in:

[Pugh 2010] Ken Pugh. “The Risks of Acceptance Test Debt,” Cutter Business Technology Journal, October 2010, 25-29.

Cited in:

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

[Simon 1973] Herbert A. Simon. “The Structure of Ill Structured Problems,” Artificial Intelligence 4, 1973, 181-201.

Available: here; Retrieved: 10/16/18

Cited in:

[Taylor 1913] Frederick Winslow Taylor. The Principles of Scientific Management. New York: Harper & Brothers, 1913.

Available: here; Retrieved: October 16, 2018 Order from Amazon

Cited in:

[Thokala 2016] Praveen Thokala, Nancy Devlin, Kevin Marsh, Rob Baltussen, Meindert Boysen, Zoltan Kalo, Thomas Longrenn et al. “Multiple Criteria Decision Analysis for Health Care Decision Making—An Introduction: Report 1 of the ISPOR MCDA Emerging Good Practices Task Force,” Value in Health 19:1, 2016, 1-13.

Available: here; Retrieved: 10/16/18

Cited in:

[Zannier 2007] Carmen Zannier, Mike Chiasson, and Frank Maurer. “A model of design decision making based on empirical results of interviews with software designers,” Information and Software Technology 49, 2007, 637-653.

Available: here; Retrieved October 15, 2018

Cited in:

What is policy?

Last updated on July 8th, 2021 at 11:46 am

DuBrin defines policies as “… general guidelines to follow when making decisions and taking action” [DuBrin 2016]. Some policies are written, some are unwritten. Some have names or identifiers, some don’t. For organizations seeking to gain control of technical debt, written policies are probably a good idea, for two reasons:

  • Many people affected by technical debt policies are probably unfamiliar with the technical debt concept. A written policy is more likely to be communicated uniformly to everyone.
  • The effort spent devising a written policy is likely to surface ambiguities, confusions, and differing needs. That’s one of the benefits of devising written policies. Resolving these issues during the policy formation process is better for the organization than resolving them during the deployment process.

A useful policy is clear. It uses terminology that’s simple and well-defined.

Properties of technical debt policy

Achieving these goals for technical debt policy formulation can present special problems. Much of the audience for the policy is unaware or incredulous of the connection between their own behavior and technical debt formation.

Specifically:

  • The policy must address an issue—technical debt—that has mainly technological manifestations
  • The policy must provide guidance for people as they make choices
  • Some of the choices that people make will produce technological manifestations
  • The connections between the choices and the technological manifestations can be obscure, especially
    when the choices don’t appear to be technical
  • Some technical debt arises from phenomena unrelated to behavior of anyone within the organization

Said differently, technical debt policy must confront four issues:

  • Some people whose behavior we must modify are unaware of the consequences of their behavior
  • Some of those same people strongly believe that the technical debt problem results from malpractice by others
  • Current incentive structures play an important role in technical debt formation
  • Some technical debt arises from phenomena external to the organization

Effective technical debt policy must therefore include these elements:

  • An education component to help people see the connection between their choices and technical debt formation
  • A situational awareness component to alert the organization to internal and external developments that could cause technical debt formation
  • A means of allocating resources to technical debt management that holds accountable the business units whose actions contributed to technical debt formation
  • A means of committing future resources to technical debt retirement

References

[Allman 2012] Eric Allman. “Managing Technical Debt: Shortcuts that save money and time today can cost you down the road,” ACM Queue, 10:3, March 23, 2012.

Available: here; Retrieved: March 16, 2017

Also cited in:

[Avgeriou 2016] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman, eds. “Managing Technical Debt in Software Engineering,” Dagstuhl Reports, 6:4, 110–138, 2016.

Available: here; Retrieved: March 10, 2017.

Cited in:

[Brenner 2017a] Richard Brenner. “A Policy Maker’s Definition of Technical Debt,” Cutter Consortium Executive Update, February 27, 2017.

Cited in:

[Cunningham 1992] Ward Cunningham. “The WyCash Portfolio Management System.” Addendum to the Proceedings of OOPSLA 1992. ACM, 1992.

Cited in:

[Cunningham 2011] Ward Cunningham. “Ward Explains Debt Metaphor” (video; here; ).

Cited in:

[DuBrin 2016] Andrew J. DuBrin. Essentials of Management, Tenth Edition. Indianapolis, Indiana: Wessex Press, 2016.

Order from Amazon

Cited in:

[Fowler 1999] Martin Fowler, Kent Beck (Contributor), John Brant (Contributor), William Opdyke, Don Robert, Erich Gamma (Foreword). Refactoring: Improving the Design of Existing Code. Boston: Addison-Wesley Professional; first edition (July 8, 1999).

Order from Amazon

Cited in:

[Fowler 2009] Martin Fowler. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009.

Available here; Retrieved January 10, 2016.

Cited in:

[Kahneman 1977] Daniel Kahneman and Amos Tversky. “Intuitive Prediction: Biases and Corrective Procedures,” Technical Report PTR-1042-7746, Defense Advanced Research Projects Agency, June 1977.

Available: here; Retrieved: September 19, 2017

Cited in:

[Kahneman 1979] Daniel Kahneman and Amos Tversky, “Intuitive Prediction: Biases and Corrective Procedures,” Management Science 12, 313-327, 1979.

Cited in:

[Kanigel 1997] Robert Kanigel. The one best way: Frederick Winslow Taylor and the enigma of efficiency. Viking Penguin, 1997.

Order from Amazon

Cited in:

[Klein 2017] Gary Klein. Sources of Power: How People Make Decisions, 20th Anniversary Edition. Cambridge, Massachusetts: The MIT Press, 1999.

Order from Amazon

Cited in:

[Laibson 1997] David Laibson. “Golden eggs and hyperbolic discounting,” Quarterly Journal of Economics 112:2, 1997, 443-477.

Available: here; Retrieved: October 25, 2018

Cited in:

[Levin 2012] Kelly Levin, Benjamin Cashore, Steven Bernstein, and Graeme Auld. “Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change,” Policy Science 45, 2012, 123–152.

Available: here; Retrieved: October 17, 2018

Cited in:

[Loewenstein 1992] George Loewenstein and Drazen Prelec. “Anomalies in Intertemporal Choice: Evidence and an Interpretation,” Quarterly Journal of Economics, 57:2, 1992, 573-598.

Available: here; Retrieved: October 12, 2018

Cited in:

[Pugh 2010] Ken Pugh. “The Risks of Acceptance Test Debt,” Cutter Business Technology Journal, October 2010, 25-29.

Cited in:

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

[Simon 1973] Herbert A. Simon. “The Structure of Ill Structured Problems,” Artificial Intelligence 4, 1973, 181-201.

Available: here; Retrieved: 10/16/18

Cited in:

[Taylor 1913] Frederick Winslow Taylor. The Principles of Scientific Management. New York: Harper & Brothers, 1913.

Available: here; Retrieved: October 16, 2018 Order from Amazon

Cited in:

[Thokala 2016] Praveen Thokala, Nancy Devlin, Kevin Marsh, Rob Baltussen, Meindert Boysen, Zoltan Kalo, Thomas Longrenn et al. “Multiple Criteria Decision Analysis for Health Care Decision Making—An Introduction: Report 1 of the ISPOR MCDA Emerging Good Practices Task Force,” Value in Health 19:1, 2016, 1-13.

Available: here; Retrieved: 10/16/18

Cited in:

[Zannier 2007] Carmen Zannier, Mike Chiasson, and Frank Maurer. “A model of design decision making based on empirical results of interviews with software designers,” Information and Software Technology 49, 2007, 637-653.

Available: here; Retrieved October 15, 2018

Cited in:

Related posts

Who are the policymakers?

Last updated on June 12th, 2021 at 02:20 pm

Organizational policy is the framework of principles that guide policymakers, decision makers, and everyone in the organization as they carry out their responsibilities. As I use the term in this blog, a policymaker is someone who’s responsible for developing, revising, or approving organizational policies. The group of policymakers also includes those who contribute to the policy development process at the content level.

Some organizational policies that don’t mention technical debt explicitly can affect the way the organization manages technical debt. For this reason, all policymakers potentially affect to technical debt management. See, for example, “Performance management systems and technical debt.” And this creates problems for organizations as they confront the problem of controlling the formation of technical debt.

The problem is that many policymakers are unaware that their work affects the rate of formation of technical debt. Many would deny it, some vociferously. Programs for managing technical debt must address the problem of educating policymakers as to their role in technical debt formation.

That’s why in this blog I try to address the needs of all policymakers relative to the effects of their decisions on technical debt management. You’ll find relatively little technical content here. But you’ll also find here find discussions of behaviors, biases, and organizational structures that aren’t usually present in discussions of technical debt management.

References

[Allman 2012] Eric Allman. “Managing Technical Debt: Shortcuts that save money and time today can cost you down the road,” ACM Queue, 10:3, March 23, 2012.

Available: here; Retrieved: March 16, 2017

Also cited in:

[Avgeriou 2016] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman, eds. “Managing Technical Debt in Software Engineering,” Dagstuhl Reports, 6:4, 110–138, 2016.

Available: here; Retrieved: March 10, 2017.

Cited in:

[Brenner 2017a] Richard Brenner. “A Policy Maker’s Definition of Technical Debt,” Cutter Consortium Executive Update, February 27, 2017.

Cited in:

[Cunningham 1992] Ward Cunningham. “The WyCash Portfolio Management System.” Addendum to the Proceedings of OOPSLA 1992. ACM, 1992.

Cited in:

[Cunningham 2011] Ward Cunningham. “Ward Explains Debt Metaphor” (video; here; ).

Cited in:

[DuBrin 2016] Andrew J. DuBrin. Essentials of Management, Tenth Edition. Indianapolis, Indiana: Wessex Press, 2016.

Order from Amazon

Cited in:

[Fowler 1999] Martin Fowler, Kent Beck (Contributor), John Brant (Contributor), William Opdyke, Don Robert, Erich Gamma (Foreword). Refactoring: Improving the Design of Existing Code. Boston: Addison-Wesley Professional; first edition (July 8, 1999).

Order from Amazon

Cited in:

[Fowler 2009] Martin Fowler. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009.

Available here; Retrieved January 10, 2016.

Cited in:

[Kahneman 1977] Daniel Kahneman and Amos Tversky. “Intuitive Prediction: Biases and Corrective Procedures,” Technical Report PTR-1042-7746, Defense Advanced Research Projects Agency, June 1977.

Available: here; Retrieved: September 19, 2017

Cited in:

[Kahneman 1979] Daniel Kahneman and Amos Tversky, “Intuitive Prediction: Biases and Corrective Procedures,” Management Science 12, 313-327, 1979.

Cited in:

[Kanigel 1997] Robert Kanigel. The one best way: Frederick Winslow Taylor and the enigma of efficiency. Viking Penguin, 1997.

Order from Amazon

Cited in:

[Klein 2017] Gary Klein. Sources of Power: How People Make Decisions, 20th Anniversary Edition. Cambridge, Massachusetts: The MIT Press, 1999.

Order from Amazon

Cited in:

[Laibson 1997] David Laibson. “Golden eggs and hyperbolic discounting,” Quarterly Journal of Economics 112:2, 1997, 443-477.

Available: here; Retrieved: October 25, 2018

Cited in:

[Levin 2012] Kelly Levin, Benjamin Cashore, Steven Bernstein, and Graeme Auld. “Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change,” Policy Science 45, 2012, 123–152.

Available: here; Retrieved: October 17, 2018

Cited in:

[Loewenstein 1992] George Loewenstein and Drazen Prelec. “Anomalies in Intertemporal Choice: Evidence and an Interpretation,” Quarterly Journal of Economics, 57:2, 1992, 573-598.

Available: here; Retrieved: October 12, 2018

Cited in:

[Pugh 2010] Ken Pugh. “The Risks of Acceptance Test Debt,” Cutter Business Technology Journal, October 2010, 25-29.

Cited in:

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

[Simon 1973] Herbert A. Simon. “The Structure of Ill Structured Problems,” Artificial Intelligence 4, 1973, 181-201.

Available: here; Retrieved: 10/16/18

Cited in:

[Taylor 1913] Frederick Winslow Taylor. The Principles of Scientific Management. New York: Harper & Brothers, 1913.

Available: here; Retrieved: October 16, 2018 Order from Amazon

Cited in:

[Thokala 2016] Praveen Thokala, Nancy Devlin, Kevin Marsh, Rob Baltussen, Meindert Boysen, Zoltan Kalo, Thomas Longrenn et al. “Multiple Criteria Decision Analysis for Health Care Decision Making—An Introduction: Report 1 of the ISPOR MCDA Emerging Good Practices Task Force,” Value in Health 19:1, 2016, 1-13.

Available: here; Retrieved: 10/16/18

Cited in:

[Zannier 2007] Carmen Zannier, Mike Chiasson, and Frank Maurer. “A model of design decision making based on empirical results of interviews with software designers,” Information and Software Technology 49, 2007, 637-653.

Available: here; Retrieved October 15, 2018

Cited in:

Related posts

References

Last updated on August 9th, 2023 at 01:10 am

[APA 2013] American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Association Publishing, 2013.

The Order from Amazon

Cited in:

[Adobe Blogs 2014] Adobe Blogs. “What is Technical Debt?,” Adobe Blogs, September 8, 2014.

Available: here; Retrieved February 26, 2017.

Cited in:

[Allman 2012] Eric Allman. “Managing Technical Debt: Shortcuts that save money and time today can cost you down the road,” ACM Queue, 10:3, March 23, 2012.

Available: here; Retrieved: March 16, 2017

Also cited in:

[Ariely 2010] Dan Ariely. “You are what you measure,” Harvard Business Review 88:6, p. 38, 2010.

This article is probably the source of the adage “You are what you measure.” Personally, I believe it’s overstated. That is, it’s true in the large, perhaps, but not in detail. Moreover, there are some things that we are that can’t be measured. But it’s important to understand the content of this article because so many people take it as dogma. Available: here; Retrieved: June 4, 2018

Cited in:

[Austin 1996] Robert D. Austin. Measuring and Managing Performance in Organizations. New York: Dorset House, 1996. ISBN:0-932633-36-6

Contains an extensive discussion of the consequences of partial supervision of performance. Since technical debt can only be partially supervised, the concept is relevant to understanding the effects of performance management systems on technical debt. Order from Amazon

Cited in:

[Avgeriou 2016] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman, eds. “Managing Technical Debt in Software Engineering,” Dagstuhl Reports, 6:4, 110–138, 2016.

Available: here; Retrieved: March 10, 2017.

Cited in:

[Babiak 2007] Paul Babiak and Robert D. Hare. Snakes in Suits: When Psychopaths Go to Work. New York: HarperCollins, 2007. ISBN:978-0-06-114789-0

An accessible and authoritative overview of organizational psychopathy. Order from Amazon

Cited in:

[Bach 1999] James Bach. “Test Automation Snake Oil!” (1999).

Available: here; Retrieved: January 2, 2019

Cited in:

[Beardsell 2010] Julie Beardsell. “IT Backsourcing: is it the solution to innovation?”, SMC Working Paper Series, Issue: 02/2010, Swiss Management Center University, 2010.

Available: here; Retrieved: February 15, 2018

Cited in:

[Blair 2017] Hunter Blair. “No free bridge: Why public–private partnerships or other ‘innovative’ financing of infrastructure will not save taxpayers money,” Economic Policy Institute blog, March 21, 2017.

Available: here; Retrieved: January 29, 2018

Cited in:

[Boehm 2016] Barry Boehm, Celia Chen, Kamonphop Srisopha, Reem Alfayez, and Lin Shiy. “Avoiding Non-Technical Sources of Software Maintenance Technical Debt,” USC Course notes, Fall 2016.

Available: here; Retrieved: July 25, 2017

Cited in:

[Boss 2011] Richard W. Boss, “RFID Technology for Libraries,” American Library Association, 2011.

Some libraries are upgrading their book tagging systems from barcodes to RFID tags—what is essentially a platform upgrade. When they do convert, every item in their collections becomes an instance of technical debt until it’s tagged with an RFID. A tagging technician can process about 1,000 items per day. It’s a big job. Available: here; Retrieved: November 21, 2017

Cited in:

[Bossavit 2013] Laurent Bossavit (@Morendil), “Zero Code Ownership will lead to a tragedy-of-the-commons situation, where everybody bemoans how ‘technical debt’ makes their job suck.”, a tweet published April 20, 2013.

Available: here; Retrieved December 29, 2016.

Cited in:

[Bouwers 2010] Eric Bouwers, Joost Visser, and Arie van Deursen. “Getting What You Measure: Four common pitfalls in using software metrics for project management,” ACM Queue 10: 50-56, 2012.

Available: here; Retrieved: June 4, 2018

Cited in:

[Brenner 2005a] Richard Brenner. “Is It Blame or Is It Accountability?” Point Lookout 5:51, December 21, 2005.

Available here; Retrieved December 30, 2016.

Cited in:

[Brenner 2011] Richard Brenner. “Indicators of Lock-In: I,” Point Lookout 11:12, March 23, 2011.

Available: here; Retrieved: October 23, 2018.

Cited in:

[Brenner 2016a] Richard Brenner. “The Psychology and Politics of Technical Debt: How We Incur Technical Debt and Why Retiring It Is So Difficult,” Cutter Business Technology Journal, 29:3, 2016, 21-27.

Cited in:

[Brenner 2016b] Richard Brenner. “Some Causes of Scope Creep,” Point Lookout 2:36, September 4, 2002.

Available here; Retrieved December 30, 2016.

Cited in:

[Brenner 2017] Richard Brenner. “Managing Technical Debt: Nine Policy Recommendations,” Cutter Consortium Executive Update 18:4, 2017.

Available: here; Retrieved: December 29, 2017

Cited in:

[Brenner 2017a] Richard Brenner. “A Policy Maker’s Definition of Technical Debt,” Cutter Consortium Executive Update, February 27, 2017.

Cited in:

[Brenner 2017b] Richard Brenner. “Managing Technical Debt: Nine Policy Recommendations,” Cutter Consortium Executive Update 18:4, 2017.

Available: here; Retrieved: December 29, 2017

Cited in:

[Brenner 2018] Richard Brenner. “Polychronic Meetings,” Point Lookout 18:1, January 3, 2018.

Available here; . Forthcoming.

Cited in:

[Bromley 1989] Daniel W. Bromley and Michael M. Cernea. “The Management of Common Property Natural Resources: Some Conceptual and Operational Fallacies.” World Bank Discussion Paper WDP-57. 1989.

Available here; Retrieved December 29, 2016.

Cited in:

[Broverman 2017] Neal Broverman. “The Success of the Gold and Expo Lines Has Taken a Toll on Bus Ridership,” Los Angeles Magazine, March 30, 2017.

Available: here; Retrieved: November 21, 2017

Cited in:

[Brown 2010] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, Raghvinder Sangwan, Carolyn Seaman, Kevin Sullivan, and Nico Zazworka. “Managing Technical Debt in Software-Reliant Systems,” in Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research 2010, New York: ACM, 2010, 47-51.

Available: here; Retrieved: July 30, 2018

Cited in:

[Burge 2015] Janet E. Burge and Raymond McCall. “Diagnosing Wicked Problems,” Design Computing and Cognition 14, 2015, 313-326.

Available: here; Retrieved: October 25, 2018

Cited in:

[Buschmann 2011b] Frank Buschmann. “To Pay or Not to Pay Technical Debt,” IEEE Software, November/December 2011, 29-31.

Available: here; Retrieved: March 16, 2017.

Cited in:

[CBS News 2013] CBS News and the Associated Press. “Thousands of U.S. bridges vulnerable to collapse,” May 25, 2013.

Available: here; Retrieved: November 29, 2017

Cited in:

[CIO 2018] CIO. “2018 State of the Cio: CIOs Race Towards Digital Business,” CIO, winter 2018.

Available: here; Retrieved March 30, 2018

Cited in:

[Childress 2016] Sarah Childress. “The Problem with ‘Broken Windows’ Policing,” PBS FrontLine, June 28, 2016.

Available: here; Retrieved: June 25, 2017

Cited in:

[Churchman 1967] C. West Churchman. “Wicked problems,” Management Science 14:4, 1967, B-141–B-142

Available: here; Retrieved: October 16, 2018

Cited in:

[Conroy 2012] Patrick Conroy. “Technical Debt: Where Are the Shareholders' Interests?,” IEEE Software, 29, 2012, p. 88.

Available: here; Retrieved: August 15, 2018.

Cited in:

[Cook 2016] John Cook, Naomi Oreskes, Peter T. Doran, William R.L. Anderegg, Bart Verheggen, Ed W. Maibach, J. Stuart Carlton, Stephan Lewandowsky, Andrew G. Skuce, Sarah A. Green, Dana Nuccitelli, Peter Jacobs, Mark Richardson, Bärbel Winkler, Rob Painting, and Ken Rice. “Consensus on consensus: a synthesis of consensus estimates on human-caused global warming,” Environmental Research Letters 11, 2016, 048002.

Available: here; Retrieved: October 23, 2018

Cited in:

[Cooper 1857] James Fenimore Cooper. The Last of the Mohicans, New York: Bantam Classics, 1982.

Order from Amazon

Cited in:

[Cunningham 1992] Ward Cunningham. “The WyCash Portfolio Management System.” Addendum to the Proceedings of OOPSLA 1992. ACM, 1992.

Cited in:

[Cunningham 2011] Ward Cunningham. “Ward Explains Debt Metaphor” (video; here; ).

Cited in:

[Delen 2007] Guus Delen. “Decision and Control Factors for IT-sourcing,” in Handbook of Network and System Administration, Jan Bergstra and Mark Burgess, eds., Boston: Elsevier, 929-946, 2007.

Order from Amazon

Cited in:

[Distante 2014] Damiano Distante, Alejandra Garrido, Julia Camelier-Carvajal, Roxana Giandini, and Gustavo Rossi. “Business processes refactoring to improve usability in E-commerce applications.” Electronic Commerce Research 14:4 (2014): 497-529.

Available: here; Retrieved: August 23, 2019

Cited in:

[Doran 1981] George T. Doran. “There’s a S.M.A.R.T. Way to Write Management’s Goals and Objectives”, Management Review, 70:11, pp. 35-36, 1981.

Cited in:

[Dragičević 2016] Tomislav Dragičević, Xiaonan Lu, Juan C. Vasquez, and Josep M. Guerrero. “DC Microgrids–Part II: A Review of Power Architectures, Applications and Standardization Issues,” IEEE Transactions on Power Electronics, vol 31:5, 3528-3549, 2016.

Cited in:

[DuBrin 2016] Andrew J. DuBrin. Essentials of Management, Tenth Edition. Indianapolis, Indiana: Wessex Press, 2016.

Order from Amazon

Cited in:

[Eck 2006] J. Eck and E.R. Maguire. “Have Changes in Policing Reduced Violent Crime? An Assessment of the Evidence,” in Blumstein, Alfred, and Joel Wallman, eds. The Crime Drop in America, Revised Edition. Cambridge: Cambridge University Press, 2006, 207-265.

Order from Amazon

Cited in:

[El-Geish 2015] Mohamed El-Geish. “Broken Windows: Software Entropy and Technical Debt,” blog at LinkedIn.com, March 6, 2015

Available: here; Retrieved: June 25, 2017

Cited in:

[Ellsberg 1961] Daniel Ellsberg. "Risk, ambiguity, and the Savage axioms." The quarterly journal of economics, 643-669, 1961.

Available: here; Retrieved: August 17, 2018.

Cited in:

[Falessi 2014] D. Falessi, Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. “Technical Debt at the Crossroads of Research and Practice: Report on the Fifth International Workshop on Managing Technical Debt,” ACM SIGSOFT Software Engineering Notes 39:2, 31-33, 2014.

Available: here; Retrieved: March 16, 2017

Cited in:

[Federal Reserve 2017] Federal Reserve Bank of St. Louis. “30-Year Fixed Rate Mortgage Average in the United States (MORTGAGE30US).” Weekly time series.

Available: here; Retrieved: November 25, 2017.

Cited in:

[Foganholi 2015] Lucas Borante Foganholi, Rogério Eduardo Garcia, Danilo Medeiros Eler, Ronaldo Celso Messias Correia, and Celso Olivete Junior. “Supporting technical debt cataloging with TD-Tracker tool,” Advances in Software Engineering 2015, 4.

Available: here; Retrieved: July 7, 2018

Cited in:

[Fowler 1999] Martin Fowler, Kent Beck (Contributor), John Brant (Contributor), William Opdyke, Don Robert, Erich Gamma (Foreword). Refactoring: Improving the Design of Existing Code. Boston: Addison-Wesley Professional; first edition (July 8, 1999).

Order from Amazon

Cited in:

[Fowler 2003] Martin Fowler. “TechnicalDebt,” blog entry at MartinFowler.com, 1 October 2003.

Retrieved January 2, 2016, available at here; .

Cited in:

[Fowler 2006] Martin Fowler. “CodeSmell,” Martin Fowler (blog), February 9, 2006.

Available: here; Retrieved: June 6, 2018

Cited in:

[Fowler 2009] Martin Fowler. “Technical Debt Quadrant.” Martin Fowler (blog), October 14, 2009.

Available here; Retrieved January 10, 2016.

Cited in:

[Frank 2005] Frank, Kenneth T., Brian Petrie, Jae S. Choi, William C. Leggett. "Trophic Cascades in a Formerly Cod-Dominated Ecosystem." Science. 308 (5728): 1621–1623. June 10, 2005.

Available here; Retrieved: March 10, 2017.

Cited in:

[Furnham 1986] Adrian Furnham. “Response bias, social desirability and dissimulation,” Personality and Individual Differences 7:3, 385-400, 1986.

Cited in:

[Gabriel 2018] Melissa Gabriel. “Hurricane Michael: Fate of costly stealth fighter jets at Tyndall Air Force Base still unknown,” USA Today: Pensacola News Journal, October 17, 2018.

Available: here; Retrieved: October 23, 2018

Cited in:

[Garnett 2013] Steve Garnett, “Technical Debt: Strategies & Tactics for Avoiding & Removing it,” RippleRock Blog, March 5, 2013.

Available: here; Retrieved February 12, 2017.

Cited in:

[Gaskin 1991] Steven P. Gaskin, Abbie Griffin, John R. Hauser, Gerald M. Katz, and Robert L. Klein. “Voice of the Customer,” Marketing Science 12:1, 1-27, 1991.

Cited in:

[Ge 2014] Xi Ge and Emerson Murphy-Hill. “Manual Refactoring Changes with Automated Refactoring Validation,” Proceedings of the 36th International Conference on Software Engineering. ACM, 2014.

Available: here; Retrieved: January 1, 2019

Cited in:

[Gladwell 2000] Malcolm Gladwell. The Tipping Point: How Little Things Can Make a Big Difference. New York: Little, Brown and Company, 2000.

Order from Amazon

Cited in:

[Gonzales 2017] Mark Gonzales. “Nationals manager Dusty Baker preaches calm vs. Cubs,” ChicagoTribune.com, October 7, 2017.

Available: here; Retrieved: December 13, 2017.

Cited in:

[Gould 1996] Stephen Jay Gould. The mismeasure of man (Revised & Expanded edition). W. W. Norton & Company, 1996.

Order from Amazon

Cited in:

[Guo 2011] Yuepu Guo, Carolyn Seaman, Rebeka Gomes, Antonio Cavalcanti, Graziela Tonin, Fabio Q. B. Da Silva, André L. M. Santos, and Clauirton Siebra. “Tracking Technical Debt: An Exploratory Case Study,” 27th IEEE International Conference on Software Maintenance (ICSM), 2011, 528-531.

Cited in:

[Hall 1973] Edward T. Hall. The Silent Language. New York: Anchor Books, 1973.

Originally published in 1959. Order from Amazon

Cited in:

[Hamburger 1973] Henry Hamburger. “N-person Prisoner’s Dilemma,” Journal of Mathematical Sociology, 3, 27–48, 1973. doi:10.1080/0022250X.1973.9989822

Cited in:

[Haque 2018] Md Shariful Haque, Jeff Carver, and Travis Atkison. "Causes, impacts, and detection approaches of code smell: a survey." Proceedings of the ACMSE 2018 Conference. ACM, 2018.

Cited in:

[Harcourt 1998] Bernard E. Harcourt. “Reflecting on the Subject: A Critique of the Social Influence Conception of Deterrence, the Broken Windows Theory, and Order-Maintenance Policing New York Style,” 97 Michigan Law Review 291, 1998.

Available: here; Retrieved: June 26, 2017

Cited in:

[Harcourt 2006a] Bernard E. Harcourt. “Bratton's ‘broken windows’:No matter what you’ve heard, the chief’s policing method wastes precious funds,” Los Angeles Times, April 20, 2006.

Available: here; Retrieved: June 25, 2017

Cited in:

[Harcourt 2006b] Bernard E. Harcourt and Jens Ludwig. “Broken Windows: New Evidence From New York City and a Five-City Social Experiment,” University of Chicago Law Review, Vol. 73, 2006.

Available: here; Retrieved: June 25, 2017

Cited in:

[Hardin 1968] Garrett Hardin. “The Tragedy of the Commons,” Science, 162, 1243-1248 1968.

Available: here; Retrieved December 29, 2016.

Cited in:

[Hardin 1998] Garrett Hardin. “Extensions of ‘The Tragedy of the Commons’,” Science, May 1, 1998: Vol. 280, Issue 5364, 682-683.

Available: here; Retrieved: July 30, 2017

Cited in:

[Hollenbeck 2012] John R. Hollenbeck, Bianca Beersma, and Maartje E. Schouten. “Beyond Team Types and Taxonomies: A Dimensional Scaling Conceptualization for Team Description,” Academy of Management Review, 37:1, 82–106, 2012. doi:10.5465/amr.2010.0181

Available: here; Retrieved: July 8, 2017

Cited in:

[Humble 2010] Jez Humble and David Farley. Continuous delivery: reliable software releases through build, test, and deployment automation, Pearson Education, 2010.

Cited in:

[Hunt 1999] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journeyman to Master. Reading, Massachusetts: Addison Wesley Longman, 1999.

Order from Amazon

Cited in:

[Iowa DOT 2016] “Construction drawing for the Northbound I-35 Flyover Ramp at U.S. 30 Near Ames,” Iowa Department of Transportation, February 2, 2016.

Available: here; Retrieved: October 31, 2018

Cited in:

[Iowa DOT 2018] “Work Continues on the Northbound I-35 Flyover Ramp at U.S. 30 Near Ames,” Iowa Department of Transportation News Release, June 27, 2018.

Available: here; Retrieved: October 31, 2018

Cited in:

[Izurieta 2017] Clemente Izurieta, Ipek Ozkaya, Carolyn Seaman, and Will Snipes. “Technical Debt: A Research Roadmap: Report on the Eighth Workshop on Managing Technical Debt (MTD 2016),” ACM SIGSOFT Software Engineering Notes, 42:1, 28-31, 2017. doi:10.1145/3041765.3041774

Cited in:

[Kahneman 1977] Daniel Kahneman and Amos Tversky. “Intuitive Prediction: Biases and Corrective Procedures,” Technical Report PTR-1042-7746, Defense Advanced Research Projects Agency, June 1977.

Available: here; Retrieved: September 19, 2017

Cited in:

[Kahneman 1979] Daniel Kahneman and Amos Tversky, “Intuitive Prediction: Biases and Corrective Procedures,” Management Science 12, 313-327, 1979.

Cited in:

[Kahneman 1984] Daniel Kahneman, Amos Tversky, and Michael S. Pallak. “Choices, values, and frames,” American Psychologist 39:4, 341-350, 1984.

Available: here; Retrieved: August 8, 2017

Cited in:

[Kahneman 2011] Daniel Kahneman. Thinking, Fast and Slow. New York: Macmillan, 2011.

Order from Amazon

Cited in:

[Kamei 2016] Yasutaka Kamei, Everton Maldonado, Emad Shihab, and Naoyasu Ubayashi. “Using Analytics to Quantify the Interest of Self-Admitted Technical Debt,” 1st International Workshop on Technical Debt Analytics (TDA 2016), 68-71.

Available: here; Retrieved: November 28, 2017

Cited in:

[Kanigel 1997] Robert Kanigel. The one best way: Frederick Winslow Taylor and the enigma of efficiency. Viking Penguin, 1997.

Order from Amazon

Cited in:

[Keizer 2018] Gregg Keizer. “Windows by the numbers: Windows 10 backtracks, Windows 7 remains resilient,” Computerworld, October 2, 2018.

Available: here; Retrieved: October 18, 2018

Cited in:

[Kelling 1982] Kelling, George L. and James Q. Wilson. “Broken Windows: The police and neighborhood safety,” The Atlantic, 249(3):29–38, March 1982.

Available: here; Retrieved: June 25, 2017

Cited in:

[Kerth 2001] Norman L. Kerth. Project Retrospectives: A Handbook for Team Reviews. New York: Dorset House, 2001.

Order from Amazon

Cited in:

[Kim 2011] Daniel H. Kim and Virginia Anderson. Systems Archetype Basics: From Story to Structure, Waltham, Massachusetts: Pegasus Communications, Inc., 2011

Available: here; Retrieved: July 4, 2017 Order from Amazon

Cited in:

[Kinkel 2016] Steffen Kinkel, Angela Jäger, Djerdj Horvath, and Bernhard Rieder. “The effects of in-house manufacturing and outsourcing on companies’ profits and productivity,” 23rd International Annual EurOMA Conference, At Trondheim, Volume: 23, June 2016.

Cited in:

[Klein 2017] Gary Klein. Sources of Power: How People Make Decisions, 20th Anniversary Edition. Cambridge, Massachusetts: The MIT Press, 1999.

Order from Amazon

Cited in:

[Kohn 1999] Alfie Kohn. Punished by rewards: The trouble with gold stars, incentive plans, A's, praise, and other bribes. Boston: Houghton Mifflin Harcourt, 1999. ISBN:0-395-71090-1

Order from Amazon

Cited in:

[Kotter 2014] John P. Kotter. “To Create Healthy Urgency, Focus on a Big Opportunity,” Harvard Business Review, February 21, 2014.

Available: here; Retrieved: December 13, 2017.

Cited in:

[Kreuter 2004] Marshall W. Kreuter, Christopher De Rosa, Elizabeth H. Howze, and Grant T. Baldwin. “Understanding wicked problems: a key to advancing environmental health promotion.” Health Education and Behavior 31:4, 2004, 441-454.

Available: here; Retrieved: October 26, 2018

Cited in:

[Kruchten 2013] Philippe Kruchten, Robert L. Nord, Ipek Ozkaya, and D. Falessi, “Technical debt: towards a crisper definition report on the 4th international workshop on managing technical debt.” ACM SIGSOFT Software Engineering Notes, 38:5, 51-54, 2013.

Includes a comment that testing debt is not technical debt. Includes a comment that technical debt is result of quick and dirty work.

Cited in:

[Kruger 1999] Justin Kruger and David Dunning. “Unskilled and Unaware of It: How Difficulties in Recognizing One's Own Incompetence Lead to Inflated Self-Assessments,” Journal of Personality and Social Psychology, 77:6, 1121-1134, 1999.

Cited in:

[Kusnet 2007] David Kusnet. “Highway Robbery II,” report of the National Association of State Highway and Transportation Unions (NASHTU).

Cited in:

[LIBCom 2006] “Work-to-rule: a guide.” libcom.org.

Available: here; Retrieved: May 9, 2017.

Cited in:

[Laibson 1997] David Laibson. “Golden eggs and hyperbolic discounting,” Quarterly Journal of Economics 112:2, 1997, 443-477.

Available: here; Retrieved: October 25, 2018

Cited in:

[Lakoff 1980] George Lakoff and Mark Johnson. Metaphors We Live By. Chicago: The University of Chicago Press, 1980.

The classic and fundamental study of metaphor. Order from Amazon

Cited in:

[Laplante 2007] Phillip A. Laplante. What Every Engineer Should Know About Software Engineering. New York: CRC Press, 2007.

Order from Amazon

Cited in:

[Leavitt 1958] Harold J. Leavitt and Thomas L. Whisler. “Management in the 1980s,” Harvard Business Review, November-December, 36, 41-48, 1958.

Cited in:

[Levin 2012] Kelly Levin, Benjamin Cashore, Steven Bernstein, and Graeme Auld. “Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change,” Policy Science 45, 2012, 123–152.

Available: here; Retrieved: October 17, 2018

Cited in:

[Levy 2009] David A. Levy, Tools of Critical Thinking: Metathoughts for Psychology (second edition). Long Grove, Illinois: Waveland Press, Inc., 2009.

Order from Amazon

Cited in:

[Li 2015] Zengyang Li, Paris Avgeriou, and Peng Liang. “A systematic mapping study on technical debt and its management,” Journal of Systems and Software 101, 193-220, 2015.

Cited in:

[Lloyd 1833] Lloyd, W. F. Two Lectures on the Checks to Population, 1833.

Available: here; Retrieved: July 30, 2017

Cited in:

[Loewenstein 1992] George Loewenstein and Drazen Prelec. “Anomalies in Intertemporal Choice: Evidence and an Interpretation,” Quarterly Journal of Economics, 57:2, 1992, 573-598.

Available: here; Retrieved: October 12, 2018

Cited in:

[Lowy 2004] Alex Lowy and Phil Hood. The Power of the 2x2 Matrix: Using 2x2 Thinking to Solve Business Problems and Make Better Decisions. Jossey-Bass, 2004.

Order from Amazon

Cited in:

[MacCormack 2016] Alan MacCormack and Daniel J. Sturtevant. “Technical debt and system architecture: The impact of coupling on defect-related activity,” The Journal of Systems and Software 120, 170–182, 2016.

Available: here; Retrieved: November 19, 2017.

Cited in:

[MacFee 1987] John MacFee. “Atchafalaya,” The New Yorker, February 23, 1987.

Available: here; Retrieved: February 5, 2018.

Cited in:

[Magel 2018] Todd Magel. “Uh-oh! Construction crews must redo $23 million project after big mistake,” KCCI News, July 11, 2018.

Available: here; Retrieved: October 31, 2018

Cited in:

[Maloney 2000] Brenna Maloney and Don Phillips. “All Aboard AMTRAK’s Acela,” The Washington Post, November 30, 2000.

Available: here; Retrieved April 18, 2017.

Cited in:

[Marks 2005] Michelle A. Marks, Leslie A. DeChurch, John E. Mathieu, Frederick J. Panzer, and Alexander Alonso. “Teamwork in multiteam systems,” Journal of Applied Psychology 90:5, 964-971, 2005.

Cited in:

[Martini 2015] A. Martini and J. Bosch. “The danger of architectural technical debt: Contagious debt and vicious circles,” Working IEEE/IFIP Conf. Softw. Arch., 2015.

Cited in:

[Matfield 2014] Kat Matfield. “The Broken Windows Theory of Technical Debt,” Mind the Product blog at MindTheProduct.com, November 11, 2014.

Available: here; Retrieved: June 25, 2017

Cited in:

[Mathieu 2001] John E. Mathieu, Michelle A. Marks and Stephen J. Zaccaro. “Multi-team systems”, in Neil Anderson, Deniz S. Ones, Handan Kepir Sinangil, and Chockalingam Viswesvaran, eds., Handbook of Industrial, Work, and Organizational Psychology Volume 2: Organizational Psychology, London: Sage Publications, 2001, 289–313.

Cited in:

[Mattis 2008] James N. Mattis. “USJFCOM Commander’s Guidance for Effects-based Operations,” Joint Force Quarterly 51, Autumn 2008 105-108.

Available: here; Retrieved November 9, 2017.

Cited in:

[McConnell 2006] Steve McConnell. Software Estimation: Demystifying the Black Art. Microsoft Press, 2006.

Order from Amazon

Cited in:

[McConnell 2008] Steve McConnell. Managing Technical Debt, white paper, Construx Software, 2008.

Available: here; Retrieved November 10, 2017.

Cited in:

[McConnell-slides 2013] Steve McConnell. “Managing Technical Debt”, ICSE 2013.

Available: here; Retrieved November 11, 2017

Cited in:

[McCullough 1972] David McCullough. The Great Bridge: The epic story of the building of the Brooklyn Bridge. New York: Simon and Schuster, 1972.

Order from Amazon

Cited in:

[McCullough 1983] David McCullough. The Great Bridge: The epic story of the building of the Brooklyn Bridge. New York: Simon and Schuster, Reprint Edition, 1983.

Order from Amazon

Cited in:

[McGovern 2003] James McGovern, Scott W. Ambler, Michael E. Stevens, James Linn, Vikas Sharan, and Elias K. Jo. A Practical Guide to Enterprise Architecture, Upper Saddle River, New Jersey: Prentice Hall PTR, 2003.

Order from Amazon

Cited in:

[Meadows 1972] Donella H. Meadows. The Limits to Growth. New York: Signet, 1972.

Order from Amazon

Cited in:

[Meadows 1997] Donella H. Meadows. “Places to Intervene in a System,” Whole Earth, Winter 1997.

Available: here; Retrieved: June 28, 2018

Cited in:

[Meadows 1999] Donella H. Meadows. “Leverage Points: Places to Intervene in a System,” Hartland VT: The Sustainability Institute, 1999.

Available: here; Retrieved: June 2, 2018.

Cited in:

[Meadows 2008] Donella H. Meadows and Diana Wright. Thinking in Systems: A Primer. White River Junction, VT: Chelsea Green Publishing, 2008.

Order from Amazon

Cited in:

[Morgenthaler 2012] J. David Morgenthaler, Misha Gridnev, Raluca Sauciuc, and Sanjay Bhansali. “Searching for Build Debt: Experiences Managing Technical Debt at Google,” Proceedings of the Third International Workshop on Managing Technical Debt (MTD 2012), Piscataway, NJ: IEEE Press, 2012, 1-6.

Available: here; Retrieved: November 11, 2017

Cited in:

[Morris 2012] Ben Morris. “How to manage down the payments on your technical debt,” Ben Morris Software Architecture blog, September 3, 2012.

Available here; Retrieved December 30, 2016. This blog entry contains an assertion that controlling formation of new technical debt requires only “diligence, ownership and governance.”

Cited in:

[Morse 2004] Gardiner Morse. “Executive psychopaths,” Harvard Business Review, 82:10, 20-22, 2004.

Available: here; Retrieved: April 25, 2018

Cited in:

[NOAA 2013] NOAA/National Weather Service. “The March, 2010 Floods in Southern New England,” WFO Taunton Storm Series Report #2013-01, January 2013.

Available: here; Retrieved: January 30, 2018

Cited in:

[NTSB 2008] National Transportation Safety Board. “Board Meeting Executive Summary: Collapse of I-35W Highway Bridge, Minneapolis, Minnesota, August 1, 2007,”, November 13, 2008.

Available: here; Retrieved: January 3, 2019.

Cited in:

[Note a] Articles and blog entries about applying Broken Windows to managing technical debt in software:

[Tuin 2012] Richard Tuin. “Software Development and the Broken Windows Theory,” blog entry at rtuin.nl, August 22, 2012.

Available: here; Retrieved: June 25, 2017.

Cited in:

[Matfield 2014] Kat Matfield. “The Broken Windows Theory of Technical Debt,” Mind the Product blog at MindTheProduct.com, November 11, 2014.

Available: here; Retrieved: June 25, 2017

Cited in:

[El-Geish 2015] Mohamed El-Geish. “Broken Windows: Software Entropy and Technical Debt,” blog at LinkedIn.com, March 6, 2015

Available: here; Retrieved: June 25, 2017

Cited in:

[Pietola 2012] Mikko Pietola. “Technical Excellence In Agile Software Projects,” Master’s Thesis, Information Technology, Oulu University of Applied Sciences, 2012.

Available: here; Retrieved: June 25, 2017

Cited in:

[Venners 2003] Bill Venners. “Don’t Live with Broken Windows: A Conversation with Andy Hunt and Dave Thomas, Part I,” blog at Artima.com, March 3, 2003.

Available: here; Retrieved: June 25, 2017.

Cited in:

Cited in:

[Note b] Articles and blog entries questioning the validity of the Broken Windows theory of crime prevention:

[Nuwer 2013] Rachel Nuwer. “Sorry, Malcolm Gladwell: NYC’s Drop in Crime Not Due to Broken Window Theory,” SmartNews blog at smithsonian.com, February 6, 2013.

Available: here; Retrieved: June 25, 2017.

Cited in:

[O’Brien 2015] [

Cited in:

[Childress 2016] Sarah Childress. “The Problem with ‘Broken Windows’ Policing,” PBS FrontLine, June 28, 2016.

Available: here; Retrieved: June 25, 2017

Cited in:

[Harcourt 2006a] Bernard E. Harcourt. “Bratton's ‘broken windows’:No matter what you’ve heard, the chief’s policing method wastes precious funds,” Los Angeles Times, April 20, 2006.

Available: here; Retrieved: June 25, 2017

Cited in:

[Harcourt 2006b] Bernard E. Harcourt and Jens Ludwig. “Broken Windows: New Evidence From New York City and a Five-City Social Experiment,” University of Chicago Law Review, Vol. 73, 2006.

Available: here; Retrieved: June 25, 2017

Cited in:

Cited in:

[Nuwer 2013] Rachel Nuwer. “Sorry, Malcolm Gladwell: NYC’s Drop in Crime Not Due to Broken Window Theory,” SmartNews blog at smithsonian.com, February 6, 2013.

Available: here; Retrieved: June 25, 2017.

Cited in:

[O’Brien 2015] [

Cited in:

[Orton 1990] J. Douglas Orton and Karl E. Weick. “Loosely Coupled Systems: A Reconceptualization,” The Academy of Management Review, 15:2, 203-223, 1990.

Available: here; Retrieved: July 11, 2018.

Cited in:

[Ostrom 1990] Elinor Ostrom. Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge: Cambridge University Press, 1990.

Cited in:

[Ostrom 2009] Elinor Ostrom. “Beyond the tragedy of commons,” Stockholm whiteboard seminars.

Video, 8:26 min. Apr 3, 2009. here; Retrieved December 29, 2016.

Cited in:

[Parnas 1979] David L. Parnas. “Designing Software for Ease of Extension and Contraction,” IEEE Transactions on Software Engineering, vol. SE-5, no. 2, March 1979, 128-138.

Available: here; Retrieved: July 13, 2017

Cited in:

[Phillips 2018a] Dave Phillips. “Tyndall Air Force Base a ‘Complete Loss’ Amid Questions About Stealth Fighters,” The New York Times, October 11, 2108.

Available: here; Retrieved: October 23, 2018

Cited in:

[Phillips 2018b] Dave Phillips. “Exposed by Michael: Climate Threat to Warplanes at Coastal Bases,” The New York Times, October 17, 2108.

Available: here; Retrieved: October 23, 2018

Cited in:

[Pietola 2012] Mikko Pietola. “Technical Excellence In Agile Software Projects,” Master’s Thesis, Information Technology, Oulu University of Applied Sciences, 2012.

Available: here; Retrieved: June 25, 2017

Cited in:

[Plant 2014] Robert Plant. “IT Has Finally Cracked the C-Suite,” Harvard Business Review, July 16, 2014.

Available: here; Retrieved: April 8, 2018

Cited in:

[Pronin 2002] Emily Pronin, Daniel Y. Lin, and Lee Ross. “The bias blind spot: Perceptions of bias in self versus others.” Personality and Social Psychology Bulletin 28:3, 369-381, 2002.

Available: here; Retrieved: July 10, 2017

Cited in:

[Pugh 2010] Ken Pugh. “The Risks of Acceptance Test Debt,” Cutter Business Technology Journal, October 2010, 25-29.

Cited in:

[Rittel 1973] Horst W. J. Rittel and Melvin M. Webber. “Dilemmas in a General Theory of Planning”, Policy Sciences 4, 1973, 155-169.

Available: here; Retrieved: October 16, 2018

Cited in:

[Ross 2000] Jeanne W. Ross and David F. Feeny. “The Evolving Role of the CIO,” in Framing the Domains of IS Management Research: Glimpsing the Future through the Past, edited by Robert W. Zmud. Pinnaflex, 2000.

Available: here; Retrieved: December 20, 2017.

Cited in:

[Schein 2016] Edgar H. Schein. Organizational Culture and Leadership, Fifth Edition, San Francisco: Jossey-Bass, 2016.

Order from Amazon

Cited in:

[Seaman 2013] Carolyn Seaman. “Measuring and Monitoring Technical Debt” 27 March 2013. Slides.

Defines technical debt as the gap between just making it work and doing it right. This is the initial principal approach to the definition. Considers known defects not fixed to be technical debt.

Cited in:

[Shapiro 1998] Carl Shapiro and Hal R. Varian. Information rules: a strategic guide to the network economy. Harvard Business Press, 1998.

Cited in:

[Shroyer 2016] Alexander Shroyer. “Refactoring Hardware vs. Software,” Hoosier EE Blog, July 17, 2016.

Available: here; Retrieved: August 22, 2019

Cited in:

[Simon 1973] Herbert A. Simon. “The Structure of Ill Structured Problems,” Artificial Intelligence 4, 1973, 181-201.

Available: here; Retrieved: 10/16/18

Cited in:

[Southern Railfan 1966] Southern Railfan. “The Days They Changed the Gauge,” 1966.

Available: here; Retrieved: July 26, 2018.

Cited in:

[Spence 2018] Ewan Spence. “New MacBook Pro Leak Reveals Apple's Innovative Failure,” Forbes, June 7, 2018.

Available: here; Retrieved: August 22, 2019

Cited in:

[Sullivan 2001] Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and Ben Hallen. “The structure and value of modularity in software design,” in ACM SIGSOFT Software Engineering Notes, 26:5, 99-108, 2001.

Available: here; Retrieved: July 11, 2018.

Cited in:

[Talbot 2011] J. Talbot. “The Brooklyn Bridge: First Steel-Wire Suspension Bridge.” Modern Steel Construction 51:6, 42-46, 2011.

Available: here; Retrieved: December 20, 2017.

Cited in:

[Taylor 1913] Frederick Winslow Taylor. The Principles of Scientific Management. New York: Harper & Brothers, 1913.

Available: here; Retrieved: October 16, 2018 Order from Amazon

Cited in:

[Tempest 2005] “The effect of journal title changes on impact factors,” Learned Publishing 18, 57–62, 2005.

Available: here; Retrieved: April 5, 2018

Cited in:

[Thokala 2016] Praveen Thokala, Nancy Devlin, Kevin Marsh, Rob Baltussen, Meindert Boysen, Zoltan Kalo, Thomas Longrenn et al. “Multiple Criteria Decision Analysis for Health Care Decision Making—An Introduction: Report 1 of the ISPOR MCDA Emerging Good Practices Task Force,” Value in Health 19:1, 2016, 1-13.

Available: here; Retrieved: 10/16/18

Cited in:

[Thorndike 1920] Edward L. Thorndike. “A constant error in psychological ratings,” Journal of Applied Psychology, 4:1, 25-29, 1920. doi:10.1037/h0071663

The first report of the halo effect. Thorndike found unexpected correlations between the ratings of various attributes of soldiers given by their commanding officers. Although the halo effect was thus defined only for rating personal attributes, it has since been observed in assessing the attributes of other entities, such as brands. Available: here; Retrieved: December 29, 2017

Cited in:

[Trumler 2016] Wolfang Trumler and Frances Paulisch. “How ‘Specification by Example’ and Test-driven Development Help to Avoid Technical Debt,” IEEE 8th International Workshop on Managing Technical Debt. IEEE Computer Society, 1-8, 2016. doi:10.1109/MTD.2016.10

Cited in:

[Tuin 2012] Richard Tuin. “Software Development and the Broken Windows Theory,” blog entry at rtuin.nl, August 22, 2012.

Available: here; Retrieved: June 25, 2017.

Cited in:

[Tversky 1973] Amos Tversky and Daniel Kahneman. "Availability: A heuristic for judging frequency and probability." Cognitive Psychology 5:2, 207-232, 1973.

Available: here; Retrieved: August 9, 2018.

Cited in:

[US Army 2010] U.S. Army (2010) Field Manual 5.0 – The Operations Process U.S. Department of the Army.

Describes the concept, value, and importance of the doctrine of commander’s intent. See the index for “commander’s intent,” and especially paragraphs 2-90 and 2-91. Available: here; Retrieved: Dec. 22, 2019.

Cited in:

[Venners 2003] Bill Venners. “Don’t Live with Broken Windows: A Conversation with Andy Hunt and Dave Thomas, Part I,” blog at Artima.com, March 3, 2003.

Available: here; Retrieved: June 25, 2017.

Cited in:

[Volpe 2017] Volpe National Transportation Systems Center. “Truck Side Guards Resource Page,” October 2017.

Available: here; Retrieved: November 22, 2017

Cited in:

[Wake 2002] Bill Wake. “Coaching Drills and Exercises,” XP123 Blog, June 15, 2002.

Available: here

Cited in:

[Waters 2010] Donald Waters. Global Logistics: New Directions In Supply Chain Management, 6th Edition, London: Kogan Page Limited, 2010.

Order from Amazon

Cited in:

[Weinberg 1985] Gerald M. Weinberg. The Secrets of Consulting. New York: Dorset House, 1985.

Ford’s Fundamental Feedback Formula. Order from Amazon

Cited in:

[Weinberg 1992] Gerald M. Weinberg. Quality Software Management Volume 1: Systems Thinking. New York: Dorset House, 1989.

This volume contains a description of the “diagram of effects” used to explain how obstacles can induce toxic conflict. Order from Amazon

Cited in:

[Weinstein 1996] Neil D. Weinstein and William M. Klein. “Unrealistic Optimism: Present and Future,” Journal of Social and Clinical Psychology 15:1, 1-8, 1996. doi:10.1521/jscp.1996.15.1.1

Cited in:

[Whitehead 1948] Alfred North Whitehead. Science and the Modern World. New York: Pelican Mentor (MacMillan), 1948 [1925].

Order from Amazon

Cited in:

[Wight 2017] Philip Wight. “How the Alaska Pipeline Is Fueling the Push to Drill in the Arctic Refuge,” YaleE360, Yale School of Forestry & Environmental Studies, November 16, 2017.

Available: here; Retrieved: February 8, 2018

Cited in:

[Willcocks 2004] L. Willcocks, J. Hindle, D. Feeny, and M. Lacity. “IT and Business Process Outsourcing: The Knowledge Potential,” Information Systems Management 21:3, 7-15, 2004.

Cited in:

[Woodard 2013] C. Jason Woodard, Narayan Ramasubbu, F. Ted Tschang, and V. Sambamurthy. “Design Capital and Design Moves: the Logic of Digital Business Strategy,” MIS Quarterly 37:2, 537-564, 2013.

Cited in:

[Yen 2015] Terry Yen, Laura Singer. “Oil exploration in the U.S. Arctic continues despite current price environment,” Today in Energy blog, U.S. Energy Information Administration, June 12, 2015.

Available: here; Retrieved: February 8, 2018.

Cited in:

[Zablah 2015] Raul Zablah and Christian Murphy. “Restructuring and Refinancing Technical Debt.” Proceedings of the IEEE 7th International Workshop on Managing Technical Debt (MTD). IEEE, 2015.

Available: here; Retrieved: February 13, 2016

Cited in:

[Zannier 2007] Carmen Zannier, Mike Chiasson, and Frank Maurer. “A model of design decision making based on empirical results of interviews with software designers,” Information and Software Technology 49, 2007, 637-653.

Available: here; Retrieved October 15, 2018

Cited in:

[van Haaster 2015] Kelsey van Haaster. “Technical Debt: A Systems Perspective,” Better Projects blog, January 8, 2015.

Available: here; Retrieved: October 2, 2017

Cited in:
Show Buttons
Hide Buttons